
Towards the Development of a Web-based Alignment Platform

Carsten Schnober

MSc Speech and Language Processing

The University of Edinburgh

2010

Abstract

In this work, a platform is developed that makes existing sentence and word alignment tools

available as web services. The tools implemented are Hunalign and GIZA++; after creating

wrappers and format converters, they are embedded into a pipeline that produces a collection

of word-aligned sentences from a parallel corpus provided by the user. The single components

of the platform are independent of each other and therefore can be used in any order and by

any web service client. The platform components are implemented in a generalisable way such

that additional modules from any other sub-fields of natural language processing or completely

different fields as well can be developed using methods shown in this work.

After giving a background view on the state of the art alignment techniques, the platform

development itself is demonstrated and evaluated. Examples of how to use it with different

clients are presented. The alignment platform is implemented as a Java servlet class that is

by design usable on any operating system. It is generated using the Soaplab software suite.

Its tool acd2xml automatically creates web service descriptions from a definition written in the

ACD format that has been designed by the Emboss project (European Molecular Biology Open

Software Suite).

Acknowledgements

I would like to thank ELDA for letting me realise this dissertation as part of my work within

the PANACEA project and the University of Edinburgh for supporting me. My supervisors

Victoria Arranz at ELDA and Simon King at the University of Edinburgh as well as Olivier

Hamon have been a great help for me with their advice.

1

Contents

1 Introduction 6

1.1 Motivation . 6

1.2 Objectives . 7

1.3 Context . 8

1.3.1 PANACEA . 8

1.3.2 ELDA . 8

1.4 Related Work . 9

1.4.1 GATE . 9

1.4.2 UIMA . 9

1.5 Terminology . 10

2 Alignment 12

2.1 Introduction . 12

2.2 Sentence Alignment . 12

2.2.1 Length-based Approaches . 13

2.2.2 Approaches Based on Lexical Information 14

2.2.3 State of the Art . 14

2.2.4 Different Transcriptions . 16

2.3 Sub-sentence Alignment . 17

2.3.1 Word-based Alignment . 17

2.3.2 Chunk Alignment . 21

2.3.3 Sub-Tree Alignment . 23

3 Web Services 24

3.1 Introduction . 24

3.2 Describing a Web Service with WSDL . 24

3.2.1 Abstract WSDL Elements . 24

3.2.2 WSDL and SOAP . 25

3.2.3 SOAP Implementations . 26

3.3 REST . 26

3.4 Web Application Technologies . 26

3.4.1 The Common Gateway Interface (CGI) 27

2

3.4.2 Java Servlets . 28

3.4.3 Comparing CGI and Java Servlets . 28

3.4.4 Other Technologies . 29

4 Development of a Web-based Alignment Platform 30

4.1 From Command Line Tools to Web Services . 31

4.1.1 Soaplab . 31

4.1.2 Integrating Components . 33

4.2 Accessing and Using Web Services . 41

4.2.1 Soaplab Built-in Clients . 41

4.2.2 Taverna . 42

4.2.3 Programmatic Access . 44

4.3 Concluding Remarks . 45

5 Results and Discussion 47

5.1 Evaluation . 47

5.1.1 Modularity . 48

5.1.2 Usability . 48

5.1.3 Robustness . 48

5.1.4 Generalisability . 48

5.1.5 Platform Independence . 49

5.1.6 Integration . 49

5.2 Discussion and Future Work . 49

A Appendix: Files 51

A.1 Extract from the WSDL File for the Hunalign Web Service 51

A.2 The ACD file for Hunalign . 55

A.3 The Script hun2giza.pl . 57

A.4 The ACD File for hun2giza.pl . 58

A.5 The Script hun2giza2.pl . 59

A.6 The ACD File for hun2giza2.pl . 60

A.7 The script plan2snt.sh . 61

A.8 The ACD file for plain2snt.sh . 62

A.9 The ACD file for mkcls . 63

A.10 The script giza.sh . 64

A.11 The ACD file for giza.sh . 65

3

List of Figures

4.1 A simple Soaplab ACD file defining the input parameter number and the output

result for the tool Square. 31

4.2 The Perl script square.pl that returns the square of a given number. 32

4.3 The square.pl script as a Web service provided by Soaplab on a Tomcat server. 33

4.4 The Pipeline Leading from a Parallel Corpus to a Word-aligned Corpus. 34

4.5 The Hunalign Web service called with the web-based Spinet client. 35

4.6 A parallel Hungarian-English sentence pair as output by Hunalign in text mode

(Hungarian diacritics removed). 35

4.7 The Hun2Giza Web service called by the web-based Spinet client. 36

4.8 A parallel Hungarian-English sentence pair, word-aligned by GIZA++ (Hungar-

ian diacritics deleted). 38

4.9 The script giza complete.sh wrapping around the different GIZA++ tools. 40

4.10 A Taverna workflow implementing an alignment pipeline. 43

4.11 The Taverna workflow input is specified by the user when executing the process. 44

4.12 A Web service client that accesses the square Web service using the Perl module

SOAP lite. 45

4

List of Tables

4.1 The non-mandatory options for Hunalign (source: Hunalign manual). 34

5

Chapter 1

Introduction

This work is about the efficient application of natural language processing tools. It demon-

strates the development of a platform for the alignment of parallel corpora in which existing

technologies are applied and combined in such a way that the production of aligned corpora can

be widely automatised without demanding much technical knowledge from the user. Therefore,

the primary target group comprises all users who apply tools for sentence and word alignment on

a regular basis. On a wider scale, the integration of additional components makes the platform

helpful for users of other tools too.

The platform is designed in a generalisable and portable manner. All its components can be

combined in any order or replaced with different tools from internal or external sources. This is

realised by a concept based on web services: state of the art sentence and word alignment tools

are implemented as web services which, from a user perspective, means that installation and

maintenance issues are no longer a hurdle. Format converters are added to ensure that data

produced by one component can be used by the next component in a pipeline that leads from

a plain input corpus to the desired result.

Regarding the generalisable design of the platform, its actual tasks – sentence and word

alignment – serve two purposes. Apart from being an essential part of applications like machine

translation systems by themselves, the implemented web services can be seen as proof of concept.

Any other kind of tool can be integrated into the established platform as well and therefore

it can form the base of an easily usable and efficient way to produce language resources of all

kinds.

1.1 Motivation

Researchers and developers of natural language processing tools generally focus on the quality

of the results. Taking the example of a sentence aligner, the tool’s quality is determined by its

ability to detect corresponding sentences with high accuracy. This focus is an obvious choice

because an improvement in alignment quality, for instance, is expected to yield improvements

in the quality of a machine translation system that applies that alignment algorithm.

However, implementing an algorithm and making it usable for an application requires addi-

6

tional resources as it can be a very time-consuming task on its own. In the meantime, language

processing tools often are only single parts of a pipeline that lead, in this work, from a plain

multi-lingual corpus via a sentence aligner and a word aligner to a set of word-aligned sentences.

Even this application with relatively few steps requires two tools the user needs to install and

to configure. In addition, he has to pass their input and outputs that do not share compatible

formats from one component to the other. Integrating all the tools of a large processing pipeline,

in the worst case, is not feasible with the resources available.

Web services are a comfortable way for users of all levels of technical expertise to access

software tools in general. While the user inevitably needs to grasp the meaning of e.g. the input

for an aligner, it should not be necessary that a linguistic researcher has to struggle with the

installation and the syntax of a software tool. Also, tools can be restricted to certain operating

systems and versions, require special libraries and other additional software that may not be

available. These factors can prevent researchers from applying a tool even if it would be the

first choice from a quality point of view.

From another point of view, the developers might not want or be allowed to open their tools

to the community due to intellectual property rights (IPR). Web services are a way to provide

software functionality while neither releasing code or data nor having to deal with potential IPR

infringement. This also makes it easier for potential users to license exactly the functionality

they require. A web service provided by the developer will allow the user to go just as far as

the application was intended to go during development.

1.2 Objectives

In chapter 2, I will give an overview over existing alignment methods on both sentence and

sub-sentence level. Chapter 3 will explains how web services work in general, which languages

they use and which technologies can be used to provide them. In chapter 4, the platform

development will be documented. Ideally, it will fulfil the following criteria:

• Modularity: instead of offering a statically predefined pipeline, the platform should allow

users to customise it according to their needs i.e. to select single components, integrate

components from other sources, and define the order of the components.

• Usability: the platform and its components should be usable with as little technical back-

ground as possible.

• Robustness:

– Large Data: linguistic resources like corpora often are very large, e.g. the 45 million

English words provided by the multi-lingual Europarl corpus version 5 (Koehn, 2005)

take 278 megabytes of diskspace; the platform needs to be able to deal with these

amounts of data.

– Heavy Load: the web server should be usable by a large number of users at the same

time.

7

• Generalisability: the platform design and component integration should be applicable for

other purposes, at least in the field of natural language processing.

• Platform Independence: the platform should run on commonly used operating systems

and web servers and require no additional external software packages.

• Integration: the different components should share input and output formats in order to

process the outcome of each other and services provided by third parties.

1.3 Context

1.3.1 PANACEA

This work takes place in the context of PANACEA1 (Platform for Automatic, Normalized

Annotation and Cost-Effective Acquisition of Language Resources for Human Language Tech-

nologies), a joint project by several European universities and companies: the Universitat Pom-

peu Fabra (Barcelona, Spain), the Consiglio Nazionale delle Ricerche – Istituto di Linguistica

Computazionale (Pisa, Italy), the Institute for Language and Speech Processing – Research

and Innovation Center in Information, Communication and Knowledge Technologies (Athens,

Greece), the University of Cambridge (Cambridge, Great Britain), Linguatec LG, (Munich,

Germany), the Dublin City University (Dublin, Ireland), and ELDA (Paris, France).

PANACEA aims to reduce the language barriers in the European Union and tackles one

of the most critical aspects of machine translation: the so-called language-resource bottleneck.

Modern machine translation systems are data-driven which means that they require large mono-

and multilingual corpora for training purposes for every language pair and each domain for which

they are developed. These need to be updated regularly as language evolves constantly.

In order to equip language technology developers with up-to-date corpora for all languages

spoken in the European Union, PANACEA’s goal is to create a platform that automates ac-

quisition, production, updating and maintenance of language resources required by machine

translation systems and and other language technologies. This project is planned to run for

three years and has started in 2010. It is split into seven work packages where the most rele-

vant for this work are ‘The PANACEA Platform’ (WP3) and ‘Parallel Corpus and Derivatives’

(WP5).

1.3.2 ELDA

I have done this work as a member of the PANACEA participant ELDA (Evaluations and

Language resources Distribution Agency). The company is the operational body of ELRA

(European Language Resources Association) that has been set up by the European Commission

and a number of European universities in 1995 in order to promote language resources for the

Human Language Technology (HLT) sector, and to evaluate language engineering technologies.

1PANACEA: http://www.panacea-lr.eu

8

ELDA has been established to collect and produce language resources that are useful for the

HLT community.

The developments presented in this document are intended to be used in the PANACEA

work packages ELDA is involved in as far as applicable, but the work presented in this document

has been done independently. However, some decisions have been influenced by the PANACEA

project’s needs. These decisions are clearly indicated in the text; all others are made by the

author of this dissertation. Regarding the practical parts of this work, PANACEA has not had

any influence because at the time of writing this work, the relevant work packages have not yet

entered the phase of implementation.

1.4 Related Work

The following projects have goals similar to those of this work and those of PANACEA. Their ap-

proaches differ but I have studied their architectures as potential inspirations. For PANACEA,

they are considered to serve as potential fall-back solutions.

1.4.1 GATE

The General Architecture for Text Engineering2 (Cunningham et al., 2001) aims to support all

kinds of natural language processing tasks. It provides four core components: an integrated de-

velopment environment (GATE Developer), a web-based collaborative annotation environment

(GATE Teamware), an object programming library (GATE Embedded) and a process for the

integration of data and models (GATE Process).

Additional components provide further GATE functionalities: GATE Mı́mir is an indexing

and repository management tool, GATE Wiki is a collaboratively usable content management

system, and GATE Cloud is a parallel distributed engine that runs GATE Embedded in super

computers.

1.4.2 UIMA

The Apache UIMA3 (Unstructured Information Management Architecture) project (Ferrucci

and Lally, 2004) is a general approach to support processing of unstructured data; including

text, audio, speech, images, and video. UIMA components can be written in Java or C++ and

are integrated into the UIMA framework using XML descriptions.

UIMA’s original goal was to make the cooperation between the IBM research centres faster

and more efficient. Meanwhile, it has become an Open Source project hosted by the Apache

Software Foundation.

2GATE: http://gate.ac.uk
3Apache UIMA: http://uima.apache.org

9

1.5 Terminology

This section describes terminology used in this document.

• NLP: Natural Language Processing is the scientific area in which computers deal with

natural languages. Usually, the term refers to written language (texts) and addresses

tasks involving natural language understanding.

• Corpus: a set of documents in one or multiple languages (monolingual or multilingual

corpus respectively).

• Document: a self-contained text that usually provides information about one topic.

• Parallel Corpus: a multi-lingual corpus containing texts that are organised as pairs such

that each document in one language is assigned to its translation(s) in the other lan-

guage(s).

• Parallel Sentences: sentence pairs in a parallel corpus that are translations of each other.

• Word-/Chunk-/Sub-tree-Aligned Sentences: a parallel sentence pair in which the basic

sentence units (words, chunks, or sub-trees) of the sentence in one language are assigned

to their corresponding parts in the translated sentence.

• Hansard: a transcript of the discussions in the parliaments of the United Kingdom and

of most members of the Commonwealth of Nations. In Canada, Hansards are written in

both official languages, English and French.

• Scripting Language: a programming language that is used to write scripts. Scripting

languages often use interpreters rather than compilers, meaning that the source code’s

compilation into machine language is performed during the programme execution. The

scripting languages that are used in this work are Perl4, Bash5, and C-Shell.

• Script: a usually not too complex software programme written in a scripting language.

• Wrapper: a software programme that calls another programme, e.g. in order to adapt the

format of the input parameters to specific needs.

• Unix Standard Streams: a Unix-based operating system provides three streams for every

programme that is run from its command line: the programme may read input from

standard input (stdin), print results to standard output (stdout), and print diagnostic

messages to standard error (stderr).

• HTTP: the Hypertext Transfer Protocol is an object-oriented, application-based protocol

used by the World Wide Web. It ‘allows an open-ended set of methods that indicate the

purpose of a request’ (Fielding et al., 1999).

4Perl: http://www.perl.org
5Bash: http://www.gnu.org/software/bash

10

• URI: a Uniform Resource Identifier is a strictly defined string that uniquely identifies

abstract or physical resources such as web pages, files, web services, e-mail addresses and

addressees, etc.

• URL: a Uniform Resource Locator is a specific type of URI that describes a network

resource by defining the transport protocol and its location.

• XML: the Extensible Markup Language is a markup language for the text-based repre-

sentation of structured data.

• HTML: the Hypertext Markup Language is a markup language that describes the contents

of (mainly) Word Wide Web documents such as texts, images, hyperlinks, and meta-

information.

These are the different font styles used in this document:

• Italic: Text segments written in italic letters reflect technical terms, proper names, e.g.

of a software programme, texts in languages other than English, or variables.

• Typewriter (fixed width): A text segment written in typewriter style refers to a

command or programming language segment and shows a command or source code in the

exact spelling that is used as input.

11

Chapter 2

Alignment

2.1 Introduction

When speaking about alignment, one has to specify which kind of alignment is meant. In

the context of this work, alignment describes the task of identifying corresponding parts in

two corpora. In the platform that is developed here, the term refers to texts – documents or

sentences – that are translations of each other (parallel corpus). In general, a sentence aligner

could also treat texts that cover the same topic in different languages without being exact

translations (comparable corpus); in that case, aligning sentences is mainly a task of extracting

parallel sentences, i.e. translated sentence pairs. In order to specify the alignment type, the size

of the aligned units can be used (paragraphs, sentences, word, phrases, etc.).

Considering one or more parallel documents, alignment is usually performed on the sentence

level at first (see section 2.2), although this can be preceded by segmenting the texts into

larger units like paragraphs. Then, for each sentence in one language, its counterpart(s) in the

translation need to be identified. Descending to a level of smaller units, the parts of aligned

sentence pairs – parallel sentences – are aligned with each other (see section 2.3).

The term alignment is used in the field of phonetics as well. In phonetic alignment, phonemes

are aligned with certain segments of recorded speech in order to prepare data for use in tech-

nologies like speech recognition and speech synthesis. This topic will not be covered in this

document.

2.2 Sentence Alignment

The sentence alignment task is to identify correspondences between sentences in one

language and sentences in the other language. (Gale and Church, 1994)

Making parallel corpora production out of multilingual texts more efficient leads to a larger

amount of available data. This means that NLP applications that exploit this kind of data e.g.

with machine learning techniques, will profit. This concerns statistical and example-based ma-

chine translation systems, but other technologies such as rule-based transfer grammar induction

12

and development depend on large corpora, too. While bilingual corpora are available for many

languages, e.g. the protocols of multi-lingual parliaments like in the European Union and in

Canada, these transcriptions usually do not mark parallel sentences.

2.2.1 Length-based Approaches

In (Gale and Church, 1994), the sentence alignment is prepared by aligning the paragraphs with

each other first. This is a ‘fairly easy’ (Gale and Church, 1994) process for the corpus in use: a

trilingual corpus (English, French, and German) by the Union Bank of Switzerland (UBS) with

725 sentences and 188 paragraphs in the English text. It provides paragraph boundary markers

that are exploited to segment the text into sections of well manageable size. So-called pseudo-

paragraphs like headings and signatures are removed by applying length thresholds because they

were not always translated. During the manual check of the results, the authors also discovered

mistakes produced during the translation, e.g. in one document a paragraph was omitted while

another one was duplicated. Documents with errors of this kind were removed.

In the second step, the sentence alignment task is tackled by a simple statistical approach

based on sentence lengths, assuming that a long sentence in one language corresponds to a long

sentence in the translation. A probability is assigned to each possible sentence pair based on

the ratio of lengths in characters and the variance of this ratio.

The most likely of all possible combinations is then computed assuming a Gaussian normal

distribution with the mean being based on the expected number of characters in one language

for each character in the other. As the näıve approach – computing every possible combination

– has an exponential computational complexity, a dynamic programming approach is used to

efficiently find the best alignment as in most sentence alignment algorithms.

For 1:1-alignments, i.e. one sentence in one language corresponds to exactly one in the

other language, error rates of 2.6% for English-French and 1.4% for English-German have been

achieved. The test corpus contained 542 out of 620 (87.4%) 1:1-alignments in the English-French

part and 625 out of 695 (89.9%) in the English-German one (Gale and Church, 1994). However,

there are less trivial cases than 1:1 sentence alignments:

At times, a single sentence in one language is translated as two or more sentences

in the other language. At other times a sentence, or even a whole passage, may be

missing from one or the other of the corpora. (Brown, Lai, and Mercer, 1991)

The statistical model presented by (Gale and Church, 1994) suffers from much higher error

rates for alignment categories other than 1:1: 9% for 2:1 and to 33% for 2:2 alignments (with

117 and 15 occurrences in the test corpus respectively). In all other alignment categories,

the algorithms has failed completely (100% error rate for the 31 occurrences of 3:1 and 3:2

alignments).

(Brown, Lai, and Mercer, 1991) present a similar approach, but measure sentence lengths

based on the number of words instead of characters. The method relies on a specific property

of the English-French Hansard of the Canadian parliament: it contains comments providing

13

information such as speaker names and temporal information that are exploited as markers in

the text, called anchors. The resulting segments can be used in a similar way as the paragraph

boundaries in (Gale and Church, 1994) but with the advantage of the anchors being either

unique (temporal information) or at least infrequent (speaker information). The model allows

for 1:0, 1:1, and 1:2 sentence alignment and achieves a total error rate of 0.9%.

The length-based approaches work well for most cases but depend on certain specifics such

as the presence of comments (Brown, Lai, and Mercer, 1991) or paragraph markers (Gale and

Church, 1994). Neither of them can handle bad translations; mistakes like missing and doubled

passages have to be dealt with manually.

2.2.2 Approaches Based on Lexical Information

Approaches based on lexical information have been proposed aiming mainly at increased ro-

bustness for corpora that contain deletions and other erroneous transcriptions. The methods

presented by (Kay and Röscheisen, 1993) and (Chen, 1993) are based on the creation of word-to-

word correspondences that are computed iteratively by their respective similarities in distribu-

tion. Supported by this simple word level alignment method, the sentence alignment is derived

subsequently by assigning scores according to word correspondences in potentially parallel sen-

tences. However, the approach presented by (Kay and Röscheisen, 1993) is computationally too

expensive to be applied on big corpora.

(Chen, 1993) creates a simple statistical word-to-word translation table during the sentence

alignment process. The method requires an initial seed of manually aligned sentence pairs.

A variant of the Expectation Maximization algorithm is applied in order to retrieve lexical

information (Dempster et al., 1977). It uses the initial seed set as a starting point and then

iterates over the whole corpus. The lexical information gained through this process allows an

exact sentence alignment and the identification of passages that have been deleted in one of the

translations.

An error rate of only 0.4% after an initial manual alignment of 100 sentences shows improve-

ment compared to the length-based methods, even with erroneous translations. The price for

the increase in quality and robustness is, besides the required manual alignment for the seed

set, that the algorithm is ‘tens of times slower than the Brown and Gale algorithms’ (Chen,

1993).

2.2.3 State of the Art

Most research on sentence alignment is based on the approaches presented in the preceding

sections and tries to optimise and combine them. In (Melamed, 1996; Melamed, 1997; Simard

and Plamondon, 1998), bitext correspondence maps between the two translations of a text are

created, i.e. trying to find text segments that indicate semantic correspondence.

In order to create a network of aligned words, the Smooth Injective Map Recognizer (SIMR)

algorithm presented by (Melamed, 1996) uses simple heuristics to find cognates – words with a

similar etymology – by detecting long common subsequences in the respective orthographies of

14

words in translations. (Simard and Plamondon, 1998) identify possible translations by searching

for words that begin with the same four letters. They are identified as ’isolated cognates’ if

no resembling words occur within an isolation window whose size depends on the length of

the given word. (Melamed, 1996) can additionally apply a bilingual dictionary, if available, to

create word mappings.

In either approach, words that are identified as correspondences are used as initial bitext

mapping points that are then exploited to generate the most likely sentence alignments. With

an error rate of 0.48%, SMIR achieves better results than the length-based methods without

the high computational complexity required by previous lexical-based approaches (Kay and

Röscheisen, 1993; Chen, 1993). Its downside is that it is limited to language pairs for that

either a dictionary is available or in which both languages have a high amount of cognates that

can be detected by analysing the orthography.

In the search for a method that is ‘fast, highly accurate, and requires no special knowledge

about the corpus or the two languages’, (Moore, 2002) presents an approach that works with-

out an external dictionary, with any language pair, and without specific requirements such as

paragraph boundary marks or anchors.

In the first step, a model based on sentence lengths is applied like in (Brown, Lai, and Mercer,

1991) in order to produce a basic alignment. Subsequently, a basic word alignment is created

using a variant of the IBM Translation Model 1 (Brown et al., 1993) (see section 2.3.1) with

the limitation that it is only applied to sentences initially aligned with a very high probability

(0.99). In order to increase both robustness and efficiency, translations of rare words (two or

fewer occurrences) are omitted. In a third step, the initial sentence alignment is modified using

the word alignments yielding the final sentence alignment.

(Moore, 2002) considers that ‘it is sufficient [...] to extract the 1-to-1 alignments’ as they are

‘in practice the only alignments that are currently used for training machine translation systems.’

For this limited focus, the results both precision and recall lie above 99% for any parameter

settings. With 300 sentences deleted randomly in one of the translations to test the algorithm’s

robustness, ‘the precision error is 13.0 times lower and the recall error is 37.4 times lower than

with the sentence-length-only-based method’ with a modest increase in computational cost.

(Varga et al., 2005) present the Hunalign algorithm (see section 4.1.2). Its strategy is to

exploit a bilingual dictionary if available in order to optimise results, but also to perform without

the assistance of external resources. At first, ‘a crude translation of the source text is produced

by converting each word token into the dictionary translation that has the highest frequency

in the target corpus’ (Varga et al., 2005). If no translation is available in the dictionary, the

original word is used as its own provisional pseudo-translation. The latter is the case for all

words if there is no dictionary available for the given language pair. This implies that only

words that are the same in both languages, including proper names etc. are correct in the

pseudo-translation.

Subsequently, Hunalign computes a similarity score between the sentences in the pseudo-

translation and the actual translation out of two factors. A token-based component counts the

15

number of shared words and normalizes by the number of tokens in the longer sentence. The

second scoring component is the correlation in length based on the number of characters in the

two sentences. In conclusion, the algorithm applies the combination of dictionary-based and

length-based approaches similar to (Moore, 2002) but with the additional option of falling back

to a purely length-based approach if necessary.

The evaluation presented by (Varga et al., 2005) compares Hunalign to the approach by

(Moore, 2002). When considering 1:1 sentence alignments only, as in (Moore, 2002), Hunalign

achieves for both recall and precision values of 99.4% for the English-Hungarian translation of

George Orwell’s 1984 with the use of a dictionary. When including one-to-many-alignments

into the evaluation, both precision and recall remain as high as 99.3%. Additionally, Hunalign,

implemented in C++, is ‘at least an order faster than Moore’s implementation (written in Perl)’

(Varga et al., 2005).

2.2.4 Different Transcriptions

The length measures presented so far in this work were designed for languages using the same

alphabets. (Wu, 1994) demonstrates that the length-based approach counting characters (Gale

and Church, 1994) works for aligning English-Chinese bilingual corpora too, as tested on the

transcriptions of the Hong Kong parliament Hansard. In total, 86.4% of the alignments have

been identified correctly; when ignoring the introductory session header with its domain-specific

formats, the length-based approach correctly identifies 95.2% of the alignments which is close

to the English-French rate of 96-98%. However, measuring sentence length by counting words

as in (Brown, Lai, and Mercer, 1991) is not easily feasible as Chinese word segmentation had

to be applied first, potentially yielding additional errors.

(Wu, 1994) furthermore applies a very limited dictionary. In order to ensure that all the

translations in it are correct and unambiguous, a highly domain-specific lexicon has been created

manually that contains very few entries such as the months and very corpus-specific terms such

as ‘C.B.E’ (Commander of the British Empire). This improves the algorithm’s results for the

introductory sentence headers so that the overall success rate raises to 92.1% while the rate for

the corpus with the headers being omitted does not change significantly due to the dictionary.

The alignment algorithm Champollion (Ma, 2006) applies dictionary translations and aims

to improve alignment quality by assigning weights to them. By applying a tf-idf 1-like weighting

scheme, the segment-wide term frequency (stf), rare words are considered to be more relevant

for aligning sentences. In order to find the most likely alignment for a bilingual document,

Champollion uses stf to compute a similarity score for the alignment candidates while penalizing

differences in lengths and any alignment type other than 1:1. Champollion requires a dictionary,

but is language-independent apart from that. Additionally, a tokenizer, a word segmenter for

Chinese, and stemmers for morphological languages, including English and Arabic, are applied

in order to prepare the alignment process.

1Term Frequency-Inverse Document Frequency: a statistical measure to determine a word’s importance in a
document in relation to a corpus

16

The results presented in (Ma, 2006) show that the outcome quality is correlated with the dic-

tionary size. Without a lexicon, i.e. only translating words that are the same in both languages

such as proper nouns, it achieves a precision and recall of 88.1% and 90.8% respectively. These

rates raise to 97.0% and 96.9% with a 58,000 words dictionary, allowing for n:m-alignments

with n and m from 0 to 4. The approach’s advantage is that it deals well with noisy inputs and

different alignment types as well as with any language if lexical resources are provided.

2.3 Sub-sentence Alignment

The alignment task on a sub-sentential level is to assign the basic units of a sentence in one

language to their corresponding parts in the translation of that sentence. The simplest units

that can be aligned are words (see section 2.3.1). From words, phrases can be derived, too; these

are groups of words that form regularly used expressions, but are not necessarily grammatical

units. In the case of words, aligning two words in different languages with each other can be

interpreted as defining them as possible translations of each other.

The basic units of a sentence can be larger than single words. A more linguistically motivated

approach aims to align chunks from parallel sentences (see section 2.3.2). A chunk is a syntactical

constituent, e.g. a noun phrase or a verb phrase, i.e. it can consist of one or multiple words. Sub-

tree alignment (see section 2.3.3) takes the syntax trees of the parallel sentences into account

and aligns partial trees (sub-trees) with each other.

2.3.1 Word-based Alignment

The IBM Models 1-5 presented by (Brown et al., 1993) form a generative approach for word-

by-word alignment. Their common basic assumption is that any string e in one language can

be generated by any string f in the other language. Ideally, the model is estimated so that the

conditional probability P (f |e) is highest for the best translation. Following the noisy-channel

model (Weaver, 1955), ‘we further take the view that when a native speaker of French produces

a string of French words he has actually conceived of a string of English words, which he

translated mentally’ (Brown et al., 1993).

According to this idea, the model aims to estimate an alignment a that maps all the strings

in a sentence in one language to those from which they have been generated, i.e. the matching

strings in the other language. An English text passage is seen as ‘a web of concepts woven

together according to the rules of English grammar’ (Brown et al., 1993).

The visible part of these concepts are the words: ‘we cannot see the concepts directly, but

only the words that they leave behind’ (Brown et al., 1993). These units are called cepts. Each

word can be part of none, one, or multiple cepts and a cept can consist of several words. During

the translation into another language, the cept generates the foreign words and the alignment

task aims to find out which words are part of which cepts, the ceptual scheme. Words in the

foreign language that have no counterpart in the original language are generated by the empty

cept.

17

For each sentence pair (e, f) exists a set of possible alignments A(e, f). With l and m being

the lengths of the two sentences e and f respectively, the size of A(e, f) is 2lm. The optimal

alignment a maximises p(e, a|f) for the sentence pair (e, f). The basic idea that underlies all the

IBM Models is to apply the Expectation Maximization algorithm (Baum, 1972; Dempster et

al., 1977), and to find the most likely alignments based on common occurrences in the parallel

corpus.

In Model 1, all alignments in a sentence pair are initially assumed to be equally likely. After

a first run over the parallel corpus, the translation probabilities t(f |e) are adapted based on the

number of co-occurrences of the string pair (e, f) according to equation 2.1 with J and I being

the sentence lengths and i and j the word positions. If there is no sentence pair containing

both the string e in a sentence and the string f in its translations, t(f |e) results in 0. The

procedure is repeated iteratively with the newly estimated translation probabilities until the

values converge. It eventually yields a translation table containing alignment probabilities and

the alignment eventually is chosen that maximises the overall probability according to this table.

Pr(fJ
1 |eI1) = p(J |I)

J∏
j=1

I∑
i=1

[p(i|j, l) · p(fj |ci)] (2.1)

IBM Model 2 is an extension of Model 1 which aims to achieve better alignments by setting

two preconditions: ‘the probability of a connection depends on the positions it connects and

on the length of the two strings’ (Brown et al., 1993). These presumptions are implemented

by using the conditional probability a(i|j,m, l) as an additional factor when computing the

translation probabilities t(f |e); here, i is the word position in the source language, j the word

position in the target language and m the length of the target string.

IBM Models 3, 4, and 5 choose for each word in a string the number of corresponding

words in the other language before searching the words themselves. This introduces the idea of

fertility:

In the pair (Jean n’aime personne|John loves nobody), we can align John with Jean

and loves with aime, but now, nobody aligns with both n’ and personne. Sometimes

words in the English sentence of the pair align with nothing in the French sentence,

and similarly, occasionally words in the French member of the pair do not appear

to go with any of the words in the English sentence. [...] We call the number of

French words that an English word produces in a given alignment its fertility in that

alignment (Brown et al., 1990).

This idea aims to improve alignment quality by assigning a higher likelihood e.g. for the

English word cheap to be aligned with two French words (bon marché) rather than with one

or three. In IBM Model 3, after the fertility model has estimated the number of foreign words

to align with an English word, the alignment probabilities are computed on the base of the

positions and string lengths like in Model 2. Additionally, Model 3 introduces a distortion

model that estimates the probability of a word to appear on a position in the target sentence

that is different from the position in the source sentence.

18

Model 4 adds another component to Model 3 that considers the movement of phrases instead

of single words only. This is motivated by the linguistic insight that movements are considered

to be less likely in case of long phrases in comparison to short phrases which is why Model 4 does

not penalise moving phrases. In opposition to that, every word of a moving phrase decreases

probability values in Model 3.

Both Model 3 and 4 are deficient, meaning that they are ‘not concentrating all of [their]

probability on events of interest’ (Brown et al., 1990). This refers to the fact that the distortion

model introduced in Model 3 assigns positions to words independently of the previous words,

i.e. ‘Model 3 wastes some of its probability.’ In practice, this leads to more and more words

being aligned with the empty word during the EM iterations (Och and Ney, 2003). Ignoring

deficiency simplifies the alignment computation, but in Model 4, where phrases can move as a

whole, this allows for words to lie on top of one another and to be placed before the first or

beyond the last position. Model 5, instead, makes sure that both single- and multi-word-cepts

are placed into vacant positions.

In the noisy-channel model, a sentence’s most likely translation is computed from two factors:

the translation probability and the language model. The IBM Models are applied to compute

the translation probabilities (Brown et al., 1990). The language model applied in (Brown et

al., 1990) is n-gram based and computes the likelihood of a possible translation to occur in the

target language.

The search for the most likely translation considering both translation and language model

probabilities – while every combination of words is seen as a possible translation – ‘face[s] the

difficulty that there are simply too many sentences to try’ (Brown et al., 1990). Therefore, a

stack search (Bahl, Jelinek, and Mercer, 1990) is applied instead, omitting less likely partial

translations at intermediate stages. However, this suboptimal method can fail to find the

most likely translation as it might be omitted in an early stage. Therefore, modern machine

translation systems like Moses (Koehn et al., 2007) use dynamic programming search algorithms

instead that always yield the optimal result.

The IBM Models ignore the fact that ‘the words are not distributed arbitrarily over the

sentence positions’ (Vogel, Ney, and Tillmann, 1996). Instead, they tend to occur in the same

neighbourhood in both languages because movement is mostly performed in clusters. There-

fore, (Vogel, Ney, and Tillmann, 1996) add a dependence for an alignment aj on the previous

alignment: p(aj |aj−1, I) where I is the translated sentence’s length which is introduced for

normalisation.

The context-sensitive approach is realised with a Hidden Markov Model (HMM) where

the alignments aJ1 := a1, aj , . . . , a
J for a sentence pair (fJ

1 , e
I
1) are seen as the hidden variables.

Additionally, the HMM alignment probabilities are assumed to depend on the difference between

i and i′ – the initial position and the mapped position – rather than on absolute positions. The

full HMM alignment probability is presented in equation 2.2. It yields equation 2.3 as presented

by (Och and Ney, 2000) which makes it comparable to the IBM Model 1 formula (see equation

2.1).

19

p(i|i′, I) =
s(i− i′)∑I
l=1 s(l − i′)

(2.2)

p(fJ
1 |eI1) =

∑
aJ1

J∏
j=1

[p(aj |aj−1, I) · p(fj |eaj) (2.3)

As a further improvement, (Och et al., 1999) proposes the usage of alignment templates. The

idea is to describe sequences by their word classes so that a sequence containing e.g. a certain

town name, can be applied for all sequences that contain any town name at that position.

Formally, an alignment template describes the alignment Ã between two sequence classes. Ã

is represented as a matrix that contains 1 at positions that are aligned with each other and 0

everywhere else. The sequence classes are produced from bilingual word classes that are learned

automatically (Och, 1999).

(Och and Ney, 2000) propose to extend a training corpus with translations taken from

an existing bilingual dictionary. It is applied during the training phase with the Expectation

Maximization algorithm to improve alignments for both words in the dictionary and indirectly

for other words too. An additional factor Flex is introduced for the EM training which assigns

a high weight to dictionary entries that occur in the training corpus and a low weight to all

others. If, for instance, the weight of Flex for a dictionary entry is 10 as in the experiments

presented in (Och and Ney, 2000), that entry is added to the training corpus 10 times.

In (Och and Ney, 2003), the alignment templates and the external dictionaries are combined

with the methods of IBM Model 5 from (Brown et al., 1993) to construct a new Model 6,

implemented in the tool GIZA++ (see section 4.1.2). Additionally, smoothing is applied for

all models to reduce overfitting and improve the dealing with rare words. In order to allow

for multi-word alignments in both directions, the training is performed with both translations

being used as source as well as target language (symmetrisation).

In order to compare the IBM Models 1-5, Model 6, and the HMM-based alignment model us-

ing the heuristics shown above, (Och and Ney, 2003) evaluate these by using the German-English

data from the Verbmobil task (Wahlster, 2000) and Canadian Hansards (French-English) for

training. A subset of both corpora was aligned manually to produce a test corpus. The qual-

ity is measured by computing the F-measure (harmonic mean) of precision and recall for each

model’s results against the manually created gold standard.

In summary, (Och and Ney, 2003) shows that statistical methods outperform heuristic ap-

proaches. Model 6 outperforms each of the other models tested and both smoothing and sym-

metrisation improve every model’s alignment quality. On the other hand, using a bilingual

dictionary and considering word classes as templates does not yield significant improvements.

However, for the IBM Models ‘it is impossible to learn that the phrase “b c” in a language

S means the same thing as word “x” in language T’ (Marcu and Wong, 2002). Therefore, they

propose an approach in which a bag of concepts is generated and these concepts are represented

by phrases consisting of one or multiple words. For each concept, a pair (ei, fi) is generated

where ei and fi are phrases. In the Model 1 presented by (Marcu and Wong, 2002), the most

20

likely alignment is searched assuming a uniform distribution like in IBM Model 1. Model 2 in

(Marcu and Wong, 2002) works similarly as IBM Model 4, by implementing a position-based

distortion model, but on a phrase instead of a word level.

For the evaluation, the presented model was trained on 100,000 parallel French-English

sentences from the Canadian Hansard corpus. Afterwards, it was used to translate 500 unseen

sentences. In comparison with IBM Model 4 trained and tested on the same corpora, the

phrase-based approach achieved a higher number of perfect translations (28% vs. 22%) and a

higher average BLEU score (Papineni et al., 2002): 0.2325 vs. 0.2158.

2.3.2 Chunk Alignment

This alignment approach considers syntactic constituents such as noun phrases or verb phrases

instead of words as the smallest units of a sentence. ‘These chunks correspond in some way to

prosodic patterns. [...] The typical chunk consists of a single content word surrounded by a

constellation of function words, matching a fixed template’ (Abney, 1991).

An assumption that makes chunks interesting for alignment purposes is that the number of

chunks will be approximately the same in translated sentences and that most reordering is re-

alised within the syntactic constituents. This approach implies that chunks need to be identified

before the actual alignment tasks. Instead of a full syntax parse, shallow parsing can be applied,

i.e. the identification of the syntactic constituents without analysing their internal structure or

their role in the sentence. This is advantageous because syntax parsers lack robustness and

‘do not well at identifying good phrases in noisy surroundings’ (Abney, 1997). This is due

to errors occurring in almost every text to a certain degree and to each parser’s ‘unavoidable

incompleteness of lexicon and grammar’ (Abney, 1997).

Function words or stop words can be used as a simple method to identify chunks. (Bouri-

gault, 1992) uses this method to find noun phrases in French texts after part-of-speech (POS)

tagging a text. There are grammatical patterns made up by elements like conjugated verbs,

pronouns, conjunctions, and certain strings containing prepositions and determiners. These

patterns provide ‘negative knowledge’ (Bourigault, 1992) about text passages that cannot be

noun phrases. Subsequently, patterns consisting of part-of-speech tags are used to find noun

phrases in the remaining text sequences.

(Church, 1988) presents a stochastic method to identify noun phrases in a POS tagged text.

In this approach, POS tag sequences are assigned to probabilities using a HMM that computes

each sequence’s likelihood of starting or ending a noun phrase. The HMM training is performed

on a corpus of 40,000 words in which 11,000 noun phrases were marked semi-automatically. As

a result, the model estimates e.g. for the sequence (V B,AT) (a verb followed by an article) a

probability of 1.0 that a noun phrase follows beginning with this article. The sequence (NN,AT)

(a noun followed by an article), however, indicates with a probability of 1.0 that a noun phrase

ends. Other sequences turn out to be more ambiguous.

The noun phrase marking is realised by a parser that inserts brackets indicating possible

beginnings and endings of noun phrases into a sequence at all possible positions while noun

21

phrases cannot overlap. The possible bracket configurations are scored according to the prob-

abilities estimated from the training corpus to find the most likely one. The authors do not

present a formal evaluation of their approach, but have found a ‘tendency to underestimate the

number of brackets’ (Church, 1988). The method missed only 5 out of 243 manually checked

noun phrases.

The bracketing method is also applied by (Ramshaw and Marcus, 1995) but using rule-

learning methods inspired by (Brill, 1994) instead of an HMM. (Skut and Brants, 1998) extend

the Markov-Model-based bracketing approach by including a recogniser for prenomial adjectival

and participal phrases, postnominal prepositional phrases, and genitives in order to identify not

only noun phrases but also prepositional phrases and adjective phrases. In (Molina and Pla,

2002), the chunking task is treated as a tagging problem so that a HMM-based tagger can be

applied for the identification of all kinds of chunks.

Alternatively, chunks are identified according to the linguistically motivated marker hypo-

thesis (Green, 1979). It states that languages tend to use closed sets of lexemes and morphemes

in order to achieve a syntactic structure on a surface level. (Gough and Way, 2004b) apply this

hypothesis for the alignment part of a machine translation system. After manually defining

six sets of marker words for different syntactic kinds of chunks for English and French, these

markers are used to identify chunks in both languages: ‘A new fragment begins where a marked

word is encountered and ends at the occurrence of the next marker word. [...] Each chunk must

contain at least one non-marker word’ (Gough and Way, 2004b).

Earlier machine translation systems based on the marker hypothesis (Gough, Way, and

Hearne, 2002; Gough and Way, 2003; Way and Gough, 2003) presume that parallel sentences

will have the same number of chunks and that their order does not need to be changed, allowing

for 1:1 chunk alignments only. In (Gough and Way, 2004a), lexical similarities and cognates

are considered during the alignment process in order to match the chunks with their respective

translations. Reordering is allowed, but penalised such that higher distances between chunks

in a parallel sentence pair yield lower probabilities for matching each other. Additionally, n:1

alignments are introduced.

(Stroppa and Way, 2006) apply chunking based on the marker hypothesis to English and

Italian texts. The presented system (MaTrEx) is supposed to work with Arabic too, where ‘de-

terminers, prepositions, and pronouns do not usually form independent tokens but are usually

part of a token which also contains a noun, an adjective, or a verb’ (Stroppa and Way, 2006).

This implies that pre-processing of the corpus with tokenisation and POS tagging becomes nec-

essary. However, introducing these complex tasks would cause the loss of one important advan-

tage, simplicity, of which chunking based on the marker hypothesis generally profits. Therefore,

(Stroppa and Way, 2006) do Arabic chunk detection using the Support Vector Machine learning

method with training performed on the 4519 syntactically marked sentences provided by the

Penn Arabic Treebank (Diab, Hacioglu, and Jurafsky, 2004; Maamouri et al., 2004).

22

2.3.3 Sub-Tree Alignment

A further step towards the consideration of syntactic context is taken in tree-based approaches

where a full syntactic analysis of parallel sentences is performed in a first step. Afterwards,

sub-trees of the resulting syntax trees are aligned with each other.

Generally, the approach is motivated by the idea that a translation depends on its context,

so the information provided by a syntax tree should improve results. In (Samuelsson and

Volk, 2006), a German-English-Swedish parallel treebank has been created based on the novel

‘Sophie’s world’. After automatically creating mono-lingual treebanks for each of the languages

by using syntax parsers, the alignment has been done manually. This work demonstrates one

central difficulty of the task: even the three human aligners disagree in up to 11% of the cases,

creating one unique Gold standard for evaluation purposes is therefore impossible.

In order to make multi-lingual treebanks useful for applications such as data-driven machine

translation (Hearne et al., 2007) and grammar induction (Nesson, Shieber, and Rush, 2006),

their production needs to be automatised. (Zhechev and Way, 2008) present a sub-tree aligner

for the automatic generation of parallel treebanks. It requires word alignment tools such as

GIZA++ for both involved languages and makes use of a syntactic parser if available; POS

taggers can be used as a fall-back option, but are not recommended.

In a first step, the the sub-tree aligner maps parallel texts on a word level. If parsers

are available, monolingual syntax trees are created in the second step. Then, the algorithm

computes equivalence scores to create links between the nodes in both trees. These scores are

based on the word-alignment probabilities for the single words of a sub-tree pair and on the

strings surrounding them. If no syntactic parser is available for one or neither of the languages,

the sub-tree aligner falls back to tree-to-string or string-to-string alignment where trees are

created as well, but with all the nodes having the same label.

(Chiang et al., 2005) shows that the syntax does not need to be linguistically motivated,

but can also be generated automatically as in the Hiero system. It ‘extends the standard non-

hierarchical notion of “phrases” to include nonterminal symbols’ (Chiang et al., 2005) where

nonterminals represent nodes in the syntax tree while the leaves are terminals, i.e. the actual

words. The model’s syntax uses a context-free grammar (CFG) without any linguistic analysis.

Therefore it works without any syntactically tagged training data. Compared to the phrase-

based machine translation system Pharao (Koehn, 2004), Hiero improves the BLEU score from

0.2676 to 0.2877 for English-Chinese translations (Chiang, 2005).

23

Chapter 3

Web Services

3.1 Introduction

A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-

processable format. (Haas and Brown, 2004)

From a more practical point of view, a Web service provides software and data from a web

server to web users and web-connected programmes. This means that the offered services can

be dynamically included into any programme running on a computer that is able to connect to

the server. A client can send variable data to a web service, if required, and retrieve results that

depend on this input. That way, web services can be part of a distributed system that executes

different computations on different machines and collects the results from the involved services.

3.2 Describing a Web Service with WSDL

A Web service is described in a dedicated XML-based language, WSDL (Web Services Descrip-

tion Language). It provides information about its functionality and how to access it to potential

clients. This includes the definition of the interface, the protocol, and the available functions.

However, there is no semantic information like the purpose of a function’s arguments and return

values included. Appendix A.1 shows an extract of the WSDL file that describes the Hunalign

Web service generated with Soaplab (see section 4.1.2).

In the WSDL paradigm, abstract descriptions are used to create concrete messages that

are sent to human and machine users by wither applying existing transport techniques such as

HTTP (Fielding et al., 1999) directly or SOAP as an additional layer (see section 3.2.2).

3.2.1 Abstract WSDL Elements

To define a service’s capabilities, WSDL uses four abstract element types. This means that they

do not give information about how to actually access the service via the network but rather

outline its communication abilities.

24

• types: defines data types that can be used as input and output. The types that are

predefined in the XML Schema Definition Language (XSD) (Peterson et al., 2009) are

sufficient for many cases as common primitive types like string, integer etc. are provided

and complex types can be defined in addition.

• message: comprises one or multiple part entries that represent the data the message

contains, i.e. a variable’s name and type. Their names are set with the name attribute.

Message parameters are defined as parts. For each part, there is a name and a type

attribute referring to one of the previously defined types.

• portType (in WSDL 2.0: interface): defines ‘a collection of operations that are collectively

supported by an end point’ (Curbera et al., 2002), i.e. the service’s available functions.

• operation: refers to an action a client can call on the server, i.e. execute a function,

and defines the messages it expects and returns (<input [...]> and <output [...]>

respectively) to perform that operation.

3.2.2 WSDL and SOAP

SOAP is a lightweight protocol for exchanging structured information in a decen-

tralized, distributed environment. It is an XML based protocol that consists of three

parts: an envelope that defines a framework for describing what is in a message and

how to process it, a set of encoding rules for expressing instances of application-

defined datatypes, and a convention for representing remote procedure calls and

responses. (Gudgin et al., 2001)

In order to integrate SOAP (Simple Object Access Protocol) into a Web service description,

WSDL uses the binding XML element. It has got a name and a type attribute that refers

to a portType (see section 3.2.1). Within the binding environment, WSDL describes how to

access the offered Web service concretely over the network. This includes the SOAP actions to

be called, i.e. their URLs, the encoding standard, and the binding style. As an alternative to

SOAP, WSDL can also directly use HTTP and MIME with respective bindings (Christensen et

al., 2001).

The binding is assigned to its network address in the service element. It refers to a binding

name using the port tag (in WSDL 2.0: endpoint). In there, the URI (Uniform Resource Identi-

fier) is declared with the soap:address tag. An extract of the WSDL definition file automatically

created by Soaplab is attached to this document in appendix A.1.

In a Web service using WSDL and SOAP, the task of the latter is to form an envelope

around the WSDL messages and to send and receive WSDL messages via a network. SOAP

generally allows the exchange of data between systems over a network and the execution of

remote procedure calls. It uses available network protocols to transport messages, usually

HTTP (Curbera et al., 2002), but transport protocols like FTP, SMTP, etc. are possible as

well.

25

The communication involves three questions: ‘what communication protocol to use (such as

SOAP over HTTP), how to accomplish individual service interactions over this protocol, and

where to terminate communication (the network address)’ (Curbera et al., 2002). The questions

of what and how are addressed by the WSDL binding element and the where is addressed by

the port element.

3.2.3 SOAP Implementations

There are several implementations for the application of the SOAP protocol. JAX-WS1 (Java

API for XML Web Services) is a Java API and by default uses SOAP messages and HTTP.

As an alternative, Apache Axis2 implements the SOAP protocol as well. Because both of

these implementations comply well with the SOAP standard, the choice is mainly a matter of

matching the client’s capabilities rather than the respective protocol’s properties.

3.3 REST

The Representational State Transfer (REST) (Fielding et al., 1999) allows for direct access

to any kind of resource, including web services, directly using HTTP to transfer data rather

than introducing an additional layer like SOAP. REST only describes methods of how to apply

existing standards for distributed systems in the World Wide Web (WWW), but not a concrete

standard or implementation.

In the REST paradigm, any WWW resource – like HTML pages, images, PDF files, etc.

– is an object that can be retrieved and embedded in an application via its URI. Its content

is what the server provides and the only condition for the successful communication is that

server and client agree on the data format. For Web services, XML-based formats (WSDL)

are recommendable for practical reasons as they are both human-readable and easy to parse.

However, resources like HTML pages and binary data can also be accessed directly by a client.

REST applications use the HTTP protocol to transfer data. The data transfer from server

to client is initiated with the HTTP GET command and the transfer from client to server with

POST. In addition, the client can create and remove resources on the server with PUT and DELETE.

A ’restful’ server, i.e. one that complies with the REST specifications, is stateless as it does

not protocol the client’s state. Therefore, the order of accesses to resources is entirely defined by

the client. Authentication, if required, is done using the HTTP built-in authentication (Franks

et al., 1999; Fielding et al., 1999).

3.4 Web Application Technologies

A web application allows a client to remotely execute a programme that is installed on a host.

The aim of a remote procedure call (RPC) is usually to send user-specific arguments to the

1JAX-WS: https://jax-ws.dev.java.net
2Apache Axis: http://ws.apache.org/axis

26

executed function and to retrieve the according results. The ability to call software programmes

in order to generate a user-specific output is an essential part of a Web service.

A main difference between a Web service and a web page is, regarding the output, the

language that is generated. In the case of web pages, the client is usually a web browser

that expects HTML pages while Web services are described in WSDL that are readable by

appropriate clients. However, these languages are commonly used only because they serve the

respective application requirements best (human reader with a web browser vs. machine client

accessing a Web service), but are no technical requirements. There are different technologies

available to create dynamic web sites of any kind, of which the most relevant are presented in

the following sections.

3.4.1 The Common Gateway Interface (CGI)

In order to provide any web content, one requires a web server that allows and controls the

network connections. To offer a Web service, the web server additionally needs the ability to

execute an RPC rather than transferring static data from server to client only. One option to

achieve this are CGI programmes (Common Gateway Interface):

CGI is the part of the Web server that can communicate with other programs running

on the server. With CGI, the Web server can call up a program, while passing user-

specific data to the program (such as what host the user is connecting from, or

input the user has supplied using HTML form syntax). The program then processes

that data and the server passes the program’s response back to the Web browser.

(Gundavaram, 1996)

A CGI programme is usually developed similarly to an ordinary command line programme

but implementing the interfaces that are defined by CGI. They allow the web server to execute

the programme locally according to a client request and to retrieve its output. There exist

programming libraries for the CGI implementation in most common programming languages.

A CGI server can take input as part of the URL separated by a ?, for example:

http://example.com/translate.cgi?word=example

Multiple inputs can be concatenated each separated by another ?. These and further infor-

mation about the client like its IP address are stored as environment variables before calling

the CGI programme. This allows the CGI to access the given information.

A CGI’s output consists of two sections that are separated by a blank line. The first section

comprises one line that defines the output format, e.g. Content-Type: text/html for HTML

output. The second provides contains the actual content, i.e. generated HTML code or other

data.

27

3.4.2 Java Servlets

The Java programming platform provides servlets (Davidson and Coward, 1999) as an alterna-

tive to CGIs:

A servlet is a small pluggable extension to a server that enhances the server’s func-

tionality. [...] While servlets can be used to extend the functionality of any Java-

enabled server, they are most often used to extend web servers, providing a powerful

efficient replacement for CGI scripts. (Hunter and Crawford, 2001)

Servlets are realised as Java javax.servlet classes3. Like CGIs, this class itself does not

provide any web server functionality, so servlets require a web server that supports the servlet

technique: a servlet runner or servlet container to which a servlet can be deployed. A servlet

container can operate in standalone mode (a web server providing servlet support) or as an

add-on (an extension to a third-party web server) (Davidson and Coward, 1999).

Java servlets are platform independent: a servlet written on one operating system running

a certain servlet container can be deployed on a different servlet container on a different system

as well.

The most popular freely available Java servlet containers are Apache Tomcat4 and Glassfish5.

In this work, Tomcat has been chosen in this work because the combination of Soaplab (see

section 4.1.1) with Tomcat is well documented. A comprehensive technical comparison between

the available servlet containers has not been performed because web servers are not the focus

of this work and by design, servlets are expected to be usable with any servlet container.

3.4.3 Comparing CGI and Java Servlets

The Common Gateway Interface was developed to allow the communication between a web

server and other processes running on one host. This implies that the other programme is being

started separately every time a client makes the web server execute it. In the case of a frequently

visited site, this leads to CGI applications having ‘perhaps the worst life cycle imaginable: When

a server receives a request that accesses a CGI program, it must create a new process to run the

CGI program and then pass to it, using environment variables and standard input, every bit

of information that might be necessary to generate a response’ (Hunter and Crawford, 2001).

In addition, the server must wait for the CGI to finish without being able to interact in the

meantime, so the CGI programme cannot, for instance, write output or error messages to the

web server log files.

This behaviour is especially problematic for CGIs written in interpreted programming lan-

guages like Perl which is in wide use because of its text processing capabilities. For every exe-

cution of the programme, a separate Perl interpreter is loaded. However, this memory-intensive

3javax.servlet documentation: http://download.oracle.com/docs/cd/E17802 01/products/products/servlet/
2.2/javadoc/javax/servlet/package-summary.html

4Apache Tomcat: http://tomcat.apache.org
5Glassfish: https://glassfish.dev.java.net

28

and computationally expensive operation can be avoided by using compiled programming lan-

guages such as C++ instead. The performance and memory issues have also been addressed

by FastCGI (Brown, 1996) where a programme is loaded into memory only once and can then

answer to multiple requests.

Java servlets have been designed to create an improved alternative, so the CGI drawbacks

have been resolved. The price is that they always require a servlet container that most web

servers do not include. Also, servlets completely depend on Java, while the CGI protocol can

be implemented in any programming language, including compiled ones.

3.4.4 Other Technologies

There are other technologies that can be used to generate dynamic web pages and therefore for

Web services, too. They are not discussed in detail in this work because they are not as easily

applicable in this context; mainly because the development takes part within the PANACEA

project where certain decisions like using Open Source software and the Linux operating system

have been set as fixed preconditions. More generally, their potential advantages do not apply

for this project and therefore do neither justify their costs nor the additional installation and

configuration effort while Open Source software is available for free and easily installable on

a Linux system. However, a brief overview of other available technologies is provided in this

section.

Active Server Pages (ASP)6, developed by Microsoft, became popular thanks to ‘both its ease

of programming and the wide-spread availability of the IIS server’ (Sandvig, 2004). However,

as described above, availability is not an issue in this project because a Tomcat server can be

used effortless. Although ASP is available for the Apache server as well, its second advantage,

the easily learnable programming language, is not considered as an argument here because the

implementation itself has not been a problematic issue during this work.

Coldfusion7 is a technology developed by Adobe Systems. It features an application server

and a markup language: the ColdFusion Markup Language (CFML) aims to make the develop-

ment of Web services more efficient by providing easily usable functions and tags that directly

produce WSDL output. But easing implementation is not the focus here, so this server has not

been considered to be used.

6Active Server Pages (ASP): http://msdn.microsoft.com/en-us/library/aa286483.aspx
7Adobe Coldfusion: http://www.adobe.com/products/coldfusion/

29

Chapter 4

Development of a Web-based

Alignment Platform

This chapter describes the implementation of available tools for sentence and word alignment

as Web services and their integration in such a way that a pipeline from an input corpus via

a sentence-aligned corpus towards a word-aligned corpus can be created. This includes the

implementation of scripts to wrap around the command line calls for the different tools and to

convert input and output formats where necessary

For the sentence alignment, Hunalign 1.0 has been chosen and GIZA++ 1.0.3 for the word

alignment. Both are state of the art implementations for their respective tasks. However, as

each of them represents only one component in the whole pipeline, they can be replaced any

time more appropriate tools appear. The implementation of these tools as Web services has

been done in a general way so the same methods are applicable to other tools in the same

manner and is therefore to be seen as proof of concept.

For the creation of Web services, the Soaplab suite (see section 4.1.1) in its currently most

recent version 2.2.0 has been chosen. All the tools applied in this work allow the free use

and adaptation of the source code under certain conditions. The GNU General Public License

(GPL)1 (used by Hunalign) requires that changes to the source code are published under the

same license. The Apache License2 (used by Soaplab) instead, does not require re-publish

changes to the source code, but does require attribution to the original software.

The choice for Soaplab has been motivated by its ease of creating Web services from existing

tools and by its platform independence that comes with the Servlet technology. It has been

decided to use Soaplab in the PANACEA project to use it for the same reasons and by many

projects in its original field, the bioinformatics, as well. Even though Soaplab is not applicable

in a straight forward way for some of the tools used in this work, writing the necessary wrapper

scripts is more efficient than completely re-writing these tools as Web services.

1GNU General Public License (GPL): http://www.gnu.org/licenses/gpl.html
2Apache License: http://www.apache.org/licenses/

30

appl: Square [

documentation: "Squares a number."

groups: "Testing"

executable: "/home/carsten/square.pl"

nonemboss: "Y"

]

float: number [

parameter = "Y"

]

outfile: result [

default: stdout

]

Figure 4.1: A simple Soaplab ACD file defining the input parameter number and the output
result for the tool Square.

4.1 From Command Line Tools to Web Services

4.1.1 Soaplab

Java servlets (see section 3.4.2) are platform independent as they run on every operating system

supporting the Java platform that is available for all commonly used operating systems. How-

ever, the technique requires software to be developed as servlet classes in the Java programming

language. In the time-frame of this work, it would be not feasible to re-implement tools as Java

servlets; neither would this procedure qualify as a good solution in general because the tools

applied in this work are already freely available and re-implementing them would not necessarily

provide any advance in quality while being prone to the introduction of programming mistakes.

A way to make existing command line tools work as Web services without the need for

re-implementing them ‘is to write a wrapper around them, making the command line tools

unified, remotely accessible, and hiding their dependencies on the underlying operating system’

(Senger, Rice, and Oinn, 2003).

In order to create a Web service from an existing command line tool, Soaplab provides the

tool acd2xml. It reads a file in the ACD format that defines the command line tool’s basic

parameters such as the supported inputs and outputs (see figure 4.1). The ACD format has

been specified in the context of the EMBOSS project (The European Molecular Biology Open

Software Suite) (Rice et al., 2000). The example shown in figure 4.1 links to the simple Perl

script square.pl that reads a number as command line argument and returns its square value

(see figure 4.2).

The section starting with appl in figure 4.1 defines the service’s basic information. The

parameters documentation and groups are used to provide a brief description and to assign

the service to a group of applications respectively. The attribute executable links to the actual

command line tool callable in the local file system. The boolean expression nonemboss: "Y"

31

#!/usr/bin/perl

my $input = $ARGV[0];

my $result = $input * $input;

print "$result\n";

Figure 4.2: The Perl script square.pl that returns the square of a given number.

declares that this programme is not part of the EMBOSS software suite, implying that it does

not natively use the EMBOSS internal formats.

The following section, float: number, declares the input variable named number and de-

fines its data type. Apart from float, primitive standard types such as string, boolean, and

integer are available, as well as lists. Additionally, the data type infile allows for an input file

to be uploaded to the Web service. The filelist type does the same for multiple files. The input

files can be defined with either comment: "data direct" or with comment: "data filename".

In the former case, files will be uploaded directly by the user while in the latter case, he will

only specify a file name.

Each input parameter for a command line tool is declared in the same syntax as number in fig-

ure 4.1: the data type followed by the variable name. By default, Soaplab uses the variable name

to specify the parameter in the form -<variable name> <value>, e.g. square.pl -number 2,

when calling the respective tool. To avoid the appearance of the variable name on the com-

mand line, the ACD attribute parameter: "Y" can be set for an input variable; this also makes

the variable mandatory. When using the attribute standard: "Y", an argument is defined as

mandatory as well, but appearing with the variable name as command line switch in the default

manner. addition: "Y", however, declares an argument to be optional.

The parameter qualifier allows to specify a command line switch to be used instead of the

variable name. This is helpful when a switch name is not meaningful (e.g. -f), making it hard

for the user to figure out its purpose (e.g. the specification of an input file). In that example,

file could be chosen as the input name while qualifier: f would specify the switch to be

used when calling the command line tool.

If the pre-defined command line parameter formats do not match a tool’s requirements, they

can be customised with the attributes tagsepar and template using the strings $$ and && as

placeholders for the parameter value and name respectively. Additionally, an input value can

be hidden from the Web service user but still be passed on the command line with the attribute

comment: "display false".

Eventually, the output is configured in the section outfile: result (see figure 4.1). This

corresponds to the name under which this output is made available by the Web service. In the

example from figure 4.1, the result is returned to the Unix output stream. Messages written

to standard error can be returned as well or can be investigated in the file report.txt that is

created automatically. The optional parameter comment: bindata allows to declare that binary

encoded data will be returned. In that case, results are printed into a file and its name can be

32

Figure 4.3: The square.pl script as a Web service provided by Soaplab on a Tomcat server.

specified in a separate outfile section to create an additional output channel.

The Soaplab tool acd2xml creates XML files in the Soaplab metadata format from any

ACD file. Soaplab uses this data to build a Java servlet file soaplab2.war that can then be

deployed to and provided by a servlet container. Figure 4.3 shows the newly created service

square accessed on an Apache Tomcat server with the web-based client Spinet that is part of

the Soaplab suite. The users enters the input into the text field labelled number and the result

is stored in the file result that is accessible over a link from the web interface.

Soaplab automates the integration of all services defined in ACD files using Apache Ant3,

a Java-based tool for the automatic compilation of software projects in various languages.

The command ant gen recompiles the Soaplab servlet including all services found in the sub-

directory src/etc/acd. The result file can then be deployed to the appropriate Tomcat directory

using ant jaxdeploy. As an alternative to the Jax implementation of SOAP, the Axis protocol

can be used with ant axis1deploy.

4.1.2 Integrating Components

This section describes the implementation of Web services using Soaplab. For each service,

an ACD file is written. Where necessary, wrappers are implemented in addition. Figure 4.4

illustrates an example pipeline that includes the most relevant alignment components.

3Java Ant: http://ant.apache.org/

33

Figure 4.4: The Pipeline Leading from a Parallel Corpus to a Word-aligned Corpus.

Hunalign option Description

-text Print output in text format
-bisent Print 1:1 alignments (bisentences) only
-cautious Only print alignments that are followed and preceded by 1:1 alignments
-hand=file Compute precision and recall for the alignment using file as a gold

standard
-realign Apply iterative algorithm
-autodict=filename Save dictionary built during alignment to filename
-utf Use UTF-8 encoding for the input files

Postprocessing Options

-thresh=n Don’t print alignments with score lower than n/100
-ppthresh=n Don’t print rungs with an average score of less than n/100 in their

vicinity
-headerthresh=n Filter rungs with score of less then n/100 at the end and beginning of

texts
-topothresh=n Filter rungs with less than n% 1:1 alignments in their vicinity

Table 4.1: The non-mandatory options for Hunalign (source: Hunalign manual).

Hunalign

Hunalign has three mandatory arguments: one dictionary file and two files containing the

parallel texts. In a Web service, all of these ought to be realised as files that are uploaded by the

user. In the ACD format, this corresponds to the data type infile; in order to require the user

to upload the files rather than providing a reference, the parameter comment: "data direct"

is set for these input variables. Additionally, the attribute parameter: "Y" is set for all of the

input parameters to declare them as mandatory.

Apart from the mandatory ones, Hunalign accepts numerous optional parameters (see table

4.1); in ACD, they are set with the attribute addition: Y. Some of them are boolean (-text,

-bisent, -realign, and -utf) and therefore do not require any values. Their presence or

absence suffices to manipulate the programme behaviour. In the ACD format, input arguments

of this kind are reflected by the data type boolean.

The optional -hand parameter allows the specification of a gold standard alignment in an

additional input file. If provided, Hunalign prints an evaluation of the result where its output

is compared to the given gold standard.

Numerous threshold parameters are specified as integer input values. These postprocessing

34

Figure 4.5: The Hunalign Web service called with the web-based Spinet client.

filters become relevant after the alignment process by removing results with low score (-thresh),

rungs with low average score in their vicinity (-ppthresh), bad rungs at the beginning and

the end of texts (-headerthresh) and rungs with too few 1:1 alignments in their vicinity

(-topothresh).

An ACD file for Hunalign including all command line parameters has been implemented

(see appendix A.2). Figure 4.5 shows the alignment Web service being called with the Spinet

web client from the Soaplab suite (see section 4.2.1).

Hun2Giza

The Perl script hun2giza.pl written during this work (see appendix A.3) converts a parallel text

produced by Hunalign into two files that are usable as input for GIZA++. In the Hunalign

output file, each line comprises three elements, separated by tabs (see figure 4.6). The first two

columns contain the source and the target language sentences. The words can be represented by

numbers or, if Hunalign has been executed with the optional parameter -text, the full sentences

are provided. The third column contains a confidence estimation value for the given alignment;

it is omitted during the conversion because GIZA++ does not make use of this information.

szomoru szurke nap v o l t ez a nyugtalansag e l e g e d e t l e n s e g he be a sad
day a day o f grey unres t o f d i s con t en t 1 .52083

Figure 4.6: A parallel Hungarian-English sentence pair as output by Hunalign in text mode
(Hungarian diacritics removed).

Hun2Giza reads a Hunalign output file and prints the sentences of one of the languages to

35

Figure 4.7: The Hun2Giza Web service called by the web-based Spinet client.

the standard output. Both languages can be output separately in order to allow storing them

in different files that provide aligned sentences that can be used by GIZA++. Every line in

the output files contains one sentence that corresponds to the sentence in the other file that is

stored in the same line number. In the case of 1-to-n alignments where n > 1, the first line of

the entry contains the actual sentences while the following n − 1 lines for the same alignment

remain empty.

With the command line switch -o [source|target], the user specifies the sentences of

which language he wants to retrieve. Commonly, both will be required so the tool would be

called twice; once with each of the output option. The input file is specified with the -f switch.

The ACD file for creating a Soaplab-based Web service from Hun2Giza is shown in appendix

A.4. It defines two input ports corresponding to the parameters -o and -f as well as an output

port which will contain the target or source sentences, as specified by the output type switch.

Figure 4.7 shows the access to the Web service provided by a Tomcat server.

Hun2Giza2

Instead of printing to the standard output channel, Soaplab Web services can also return files

written by a software tool. To create a converter that is more practical for the given task,

the initial version of hun2giza.pl has been changed. The new version (Hun2Giza2) prints both

aligned target and source sentences directly into files (see appendix A.5). The output file names

can be specified by the user with the second and third command line parameters – the first one

is the input file – or will be defaulted to source and target.

This change also requires a new ACD file that reflects the tool’s new output channels (see

36

appendix A.6). The sections outfile: source and outfile: target refer to the files contain-

ing the sentences in the different languages. The servlet container will store them in its local

file system when executing the tool and make them accessible to the user afterwards.

plain2snt

The tool plain2snt.out is part of the GIZA++ package. It takes two input files as arguments,

expecting that the first one contains sentences in the source language and the second one

contains translations of these sentences in the target language. Corresponding sentences are

assumed to appear in the same line in both files.

The tool writes four output files: a vocabulary file for both of the input files and two

GIZA++ sentence files. The sentence files contain the aligned sentences in a numeric encoding

in both directions (source-target and target-source) respectively.

The names plain2snt.out assigns to the output files is subject to the input file names.

This makes it impossible to return them automatically because the ACD format cannot deal

with variables that could, for instance, derive the output file names from the input file names.

Therefore, the wrapper script plain2snt.sh has been implemented that calls plain2snt.out but

allows for the explicit specification of the output file names on the command line. plain2snt.sh

predicts the output file names generated by plain2snt.out and uses the Unix tool cat to print

their content into the files specified by the user (see appendix A.7).

plain2snt.out generates the output file names according to a simple pattern: it adds the

extensions .vcb and .snt to the input file names; if they end with .txt or .tok, these extensions

are removed before attaching the suffix. The wrapper script’s main task is to detect suffixes .txt

and .tok from the input files as they change the name generation behaviour of plain2snt.out.

Subsequently, the script adapts the predicted output file names accordingly.

In the corresponding ACD file (see appendix A.8), two input ports are defined for the first

two command line arguments referring to the input files. Four output ports are created to grant

access to all the files created by plain2snt.out.

mkcls

The tool mkcls (Och, 1995) is a part of the GIZA++ package, but it is independent from

the aligner. mkcls automatically extracts word classes from a text corpus using a maximum

likelihood criterion. The user can specify the number of classes to generate (switch -c) and the

number of iterations the algorithm will perform (-n). The input file is any text – usually the

text to be aligned with GIZA++ in the subsequent step – and it is specified with the command

line switch -p. An output file must be specified with -V or the results will not be stored.

Appendix A.9 shows the ACD file wrapping mkcls as a Soaplab Web service. It specifies

the two optional parameters and the mandatory input file as well as the output file containing

the classes. Word class files for both the source and the target language are not necessary for

the GIZA++ alignment process, but they will improve the results if available. It is therefore

recommended to run mkcls on both of the initial input text files.

37

GIZA++

GIZA++ is completely configurable over a configuration file; its location can be specified on

the command line. All of the 91 options (GIZA++ version 1.0.3) can be defined there, but

may also be overwritten on the command line when calling GIZA++. The configuration file

comprises one option per line in which the first column contains the option and the second

column – separated by a space – provides the corresponding value. In order to overwrite a

value, the option name serves as a command line switch which is followed by the new value,

e.g. GIZA++ -p 0.98.

An example entry for the output alignments is shown in figure 4.8: the first line provides

information about the sentence lengths and the alignment score, the second line shows the

target sentence and the third line presents the source sentence, each word being annotated with

none, one, or several numbers that refer to word positions in the target sentence. Note that the

sentences in this example have been preprocessed by Hunalign’s built-in stemmer which yields

the example sentences presented in figure 4.8.

Sentence pa i r (7) source l ength 8 t a r g e t l ength 12 al ignment s co r e :
4 .53448 e−17

he be a sad day a day o f grey unres t o f d i s con t en t
NULL ({ }) szomoru ({ 1 }) szurke ({ 9 }) nap ({ 2 }) v o l t ({ 6 }) ez ({ })

a ({ }) nyugtalansag ({ 3 4 5 7 8 10 11 }) e l e g e d e t l e n s e g ({ 12 })

Figure 4.8: A parallel Hungarian-English sentence pair, word-aligned by GIZA++ (Hungarian
diacritics deleted).

In addition to the actual alignment, information such as intermediate results, probability

tables, fertility tables, etc., that are stored in other files during the alignment process, contain

information that is valuable for some use cases. In order to avoid the loss of this information,

the Web service must allow the user to access these files too.

The configuration file can specify the location of the input files, i.e. the vocabulary files for

both languages and the file that contains the actual sentences. However, in the case of a Web

service, these input files are generally not available in the server’s local file system and therefore

cannot be specified in the configuration file. Instead, the user needs to upload them and their

locations have to be specified when calling GIZA++.

GIZA++ produces numerous files, their common name prefix is defined with the GIZA++

-o switch. However, this raises new problems when creating a Soaplab Web service with an

ACD file for two reasons:

1. The user does not directly specify an output file name but only the pattern that will be

used for all the files created by GIZA++ during the alignment process. As mentioned

above, it is not possible to deal with this kind of implicit information in the ACD format,

so the output file name cannot be derived from the prefix specified by the -o switch.

2. The number and names of produced files partly depends on the configuration options.

38

The aligned sentences are normally written into the file <prefix>.A3.final, but that

name changes when running on a case sensitive operating file system (such as HFS+ that

is used by Mac OS X) or if that file already exists.

To create an interface with which the ACD format can deal, the wrapper script giza.sh has

been implemented (see appendix A.10). It takes several command line parameters:

• The source text vocabulary file

• The target text vocabulary file

• The files containing the parallel sentence pairs in GIZA++ format

• GIZA++ configuration file (optional, must end with .zip, defaults to giza.zip).

• A dictionary in GIZA++ format (two columns separated by spaces defining target word

number and source word number) (optional)

The wrapper script promotes the parameters that define the input files to GIZA++ using

the appropriate command line switches. The output file name given to giza.sh is used to

derive an output prefix, e.g. giza.zip yields the prefix giza that is then included into the

GIZA++ command line as -o giza. Eventually, the wrapper script collects all the files in

the local directory that start with the given prefix and adds them to a Zip archive. The Web

service returns this archive to the user to provide him with all available GIZA++ output files.

Accordingly, the corresponding ACD file defines five input ports from which one is optional (the

dictionary) and one output file (see appendix A.11).

However, the word classes that can be created with mkcls are not exploited by the described

method to call GIZA++. This is due to the fact that their location is not configurable but

statically defined in the GIZA++ source code. The programme searches for them in the current

directory by attaching the suffix .classes to the provided vocabulary files. These file names

are not necessarily preserved in the Web service’s local environment even if they were uploaded

with suitable names. A solution without having to change the GIZA++ source code is presented

in the following subsection.

Wrapping all the GIZA++ Components

The preceding parts of this section have described the tools that prepare the files output by

Hunalign for the GIZA++ word alignment process and the GIZA++ execution itself. As shown,

this causes problems regarding input and output files because GIZA++ is designed to run on

a system with reliable output file names while the file names that are used internally by a Web

service are not predictable.

The last two steps, creating word classes and calling GIZA++, are automatically performed

by the C-Shell script trainGIZA++.sh that is part of the GIZA++ package. However, the script

as provided by GIZA++ version 1.0.3 actually does not fully comply with the C-Shell syntax;

39

#!/ bin / bash

#PATH c o n t a i n i n g GIZA++ t o o l s :
GIZAPATH=/home/ ca r s t en / bin

SOURCE and TARGET must not conta in . s u f f i c e s or trainGIZA++.sh won ’ t
work !

SOURCE=$1
TARGET=$2

c a l l GIZA t o o l p l a i n 2 s n t . out , w i l l c r e a t e vcb and snt f i l e s
$GIZAPATH/ p l a i n 2 s n t . out $SOURCE $TARGET > p l a i n 2 s n t . out

VCBFILE1=$ (basename $SOURCE) . vcb
VCBFILE2=$ (basename $TARGET) . vcb
SNTFILE=$ (basename $SOURCE\ $ (basename $TARGET) . snt)
export PATH=$PATH:$GIZAPATH
$GIZAPATH/trainGIZA++.sh $VCBFILE1 $VCBFILE2 $SNTFILE

cat GIZA++.A3 . f i n a l

Figure 4.9: The script giza complete.sh wrapping around the different GIZA++ tools.

therefore a correction in the line reading the command line arguments hat to be done (change

$# to $#argv in line 3).

A wrapper script giza complete.sh around the tools plain2snt.out and trainGIZA++.sh has

been written that takes the parallel texts produced by Hun2Giza as command line parameters

and uses the command cat to print the resulting alignment file named GIZA++.A3.final to

the Unix standard output (see figure 4.9). This allows to run the complete alignment procedure

on the server in a single pipeline, including the word class generator mkcls. This method does

not allow intermediate interaction with the user; this can be seen as an advantage because it

eases the application. On the other hand, the user is not able to change all the configuration

options. However, this approach solves the file naming problem with word classes generated by

mkcls that has been described previously in this section.

In the same time, executing this complete GIZA++ workflow at once forbids the user to

inspect intermediate output files or to use additional features such as the usage of an optionally

provided word-based dictionary. Another risk this approach takes is that it defines the name

of the file it returns statically although it can possibly change depending on the environment

in which GIZA++ runs. However, this issue can be resolved by adding a subroutine that

automatically searches for the correct file; in the context of this work, the script runs on the

same case-sensitive file system and in its own directory, so the output file always gets the same

name.

40

4.2 Accessing and Using Web Services

This section shows how to use the Web services created in the previous sections in practice.

Once the Soaplab and its Web services have been deployed to a servlet container as described

in section 4.1.1, they are accessible with any client that is capable of communicating via the

chosen SOAP implementation, i.e. Jax or Axis.

By default, Apache Tomcat provides the Soaplab service using Jax at the directory soaplab2

if it has been deployed with the command ant jaxdeploy. When using the command ant

axis1deploy instead, using the Axis protocol, the default location on the server is soaplab2-

axis.

At first, a client requires information about a Web service’s basics such as the communication

protocol and the available input and output ports. The typical source for this information is the

WSDL file. In the context of Soaplab, the WSDL file is stored at an address that is generated

from the service’s name. For instance, for the previously created service hunalign, that has been

defined as part of the group aligner, Soaplap provides a WSDL file at this location on the web

server:

soaplab2-axis/services/aligner.hunalign?wsdl

In order to make a complete URL, the protocol, the server name and optionally the port

need to be included. If the server is running locally (localhost), is listening at port number

8080, and uses the HTTP protocol, the full URL looks like this:

http://localhost:8080/soaplab2-axis/services/aligner.hunalign?wsdl

To access any other service, the service name (hunalign) and its group name (aligner)

need to be adapted. A list of all services that are made available by a Soaplab server is provided

at this URL:

http://localhost:8080/soaplab2-axis/services

4.2.1 Soaplab Built-in Clients

Spinet

Soaplab provides a simple web-based client to allow instant access to its Web services: Spinet.

In practice, this mainly serves testing and demonstration purposes as Web services are usually

designed for automatic access by other software programmes. In Spinet, the user uploads input

parameters for a Web service via HTML forms; they can handle text boxes, selection lists, file

uploads, etc.

After a Web service has run, Spinet makes the results accessible through HTML links point-

ing to the resulting file or files. Error and other diagnostic messages are accessible on the Spinet

page in the Report section. Several figures showing Spinet accessing Soaplab Web services have

been shown in section 4.1.

41

Soaplab Command Line Client

In addition to the web-based client, the Soaplab suite provides a command line client (run-

cmdline-client) for its Web services. Server and protocol are specified with the command

line switches -host, -port, -protocol (can be jaxws, local, or axis1), and -name (e.g.

aligner.hunalign). Alternatively, the full URL can be specified with -e.

The standard use case, executing a job and waiting for it to end, is invoked with the -w

switch. All results will be printed to the screen if -r is specified as well. Alternatively, -i

returns information about the input parameters.

Input parameters are specified at the end of the command line as pairs of parameter names

and values. If the content of a file should be uploaded, the file’s name preceded by ‘:’ can be

used as input value. An example call for the square Web service shown above with 2 as input

value:

run-cmdline-client -protocol axis1 -host localhost -port 8080 \

-name testing.square -w -r number 2

4.2.2 Taverna

The Taverna project provides a graphical workbench tool for both creating and

running workflows that represent in silicio bioinformatics experiments. (Oinn et

al., 2004)

Despite its origins in the field of bioinformatics, Taverna (Oinn et al., 2006) is applicable

for any use case that involves Web services. Therefore, the PANACEA project has decided to

define Taverna as its default workflow editor, meaning that it will be the standard tool with

which the users plug different Web services together to create customised pipelines for their

specific needs.

In Taverna, a workflow is considered to be a graph of processors, each of which

transforms a set of data inputs into a set of data outputs. (Oinn et al., 2004)

A processor, in the Taverna terminology, transforms some input to some output data and,

in the context of this work, corresponds to a Web service. The processor’s name also reflects

the Web service’s name; in the case of Soaplab Web services, these are the names that have

been defined in the ACD definition files. Additionally, Taverna allows other processor types

that are not applied in this work such as locally installed programmes and nested workflows. A

workflow can have multiple input and output ports that form the beginning and the end of the

pipeline while each component has its own input and output ports.

Using Taverna has several advantages for users of NLP Web services. The graphical interface

allows it to easily apply numerous software tools and connect their outputs with the inputs of

others. As for Web services in general, the user only requires background knowledge about

the meanings of the tool’s inputs and outputs, but no technical knowledge about the software.

42

Figure 4.10: A Taverna workflow implementing an alignment pipeline.

However, Taverna allows the user to investigate intermediate results as Taverna temporarily

stores them locally and displays them in its graphical user interface upon request.

Workflows created with Taverna are stored in the XML-based markup language SCUFL

(Simple Conceptual Unified Flow Language). Being a text-based format, these file are human-

readable and could be used and edited by third-party editors as well. SCUFL is described in

the Taverna manual4.

Taverna supports WSDL-based Web services in general; they can be added to the Taverna

service provider list using the WSDL URL specified by Soaplab as described above. Additionally,

Taverna version 2 directly supports Soaplab servers which makes it possible to integrate a

Soaplab server with all its services at once. It can be accessed in the sub-directory services

(by default soaplab2-axis/services/ when using the Axis protocol). For Taverna version 1,

there is a Soaplab plugin available5.

After adding the Soaplab server’s Web services, they can be integrated as components of

a Taverna workflow. Figure 4.10 shows a complete workflow using the tools and Web services

created during this work. In the example, the input ports stand on the top. The user can

specify as many as necessary for his needs; here five have been specified. The two input corpora

(source and target) and a dictionary (dictionary) form the basic parameters for Hunalign.

Additionally, the input text makes Hunalign produce text output rather than numeric. These

four workflow inputs are directly connected with matching input ports of the first processor

(hunalign). For the fifth input port (GIZAconf), the GIZA++ configuration file is expected

from the user and it is therefore directly connected to giza, the last processor in the pipeline.

For each processor, the diagram shows all available input and output ports (this can be

4MyGrid: http://www.mygrid.org.uk/usermanual1.7/scufl language wb features.html
5Taverna Soaplab plugin: http://soaplab.sourceforge.net/soaplab2/TavernaNotes.html

43

Figure 4.11: The Taverna workflow input is specified by the user when executing the process.

deactivated to make large workflows clearer). The hunalign processor’s output is connected to

the only hun2giza2 input port. As described in section 4.1.2, Hun2Giza2 produces two files,

reflected by the output ports source and target, that are then forwarded to the matching

plain2snt input ports. In a similar manner, the three relevant plan2snt output ports (two

vocabulary files voc1 and voc2 and the aligned sentences file sentences1) are connected to the

corresponding input ports of the giza component. Finally, the GIZA++ output is returned to

the user via the connection between the giza output also named giza and the workflow output

port word_alignments.

Taverna makes the final result(s) available in its interface after the workflow has terminated

where they can directly be investigated or stored. The intermediate results produced by the

single components are available too.

The input values are specified by the user when she runs the workflow (see Figure 4.11).

Note that the data types are not validated by Taverna so it falls into the user’s responsibility

to provide the data in the form required by the services. However, for the connection between

input and output ports, Taverna can provide a validation report in which conflicting data types

are reported.

4.2.3 Programmatic Access

The purpose of most Web services is to provide functionality that is directly usable by other

software programmes. These other programmes therefore need to send a request to the Web

44

#!/ usr / b in / p e r l

use SOAP : : L i t e ;

my %input = (’ number ’ => $ARGV[0]) ;
my $ur i = ’ http :// l o c a l h o s t :8080/ soaplab2−a x i s / s e r v i c e s / t e s t i n g . square ’ ;
my $soap = new SOAP : : Lite−>proxy ($ur i) ;
my $ job id = $soap−>createAndRun (SOAP : : Data−>type (map=>\%input))−>r e s u l t () ;
my $ r e s u l t s = $soap−>ge tResu l t s ($ job id)−>r e s u l t () ;
print ” Square o f $number : $ $ r e s u l t s { ’ r e s u l t ’} ” ;

Figure 4.12: A Web service client that accesses the square Web service using the Perl module
SOAP lite.

service provider according to its capabilities, i.e. using SOAP in the context of this work. The

developer may implement the SOAP communication from scratch, entirely rely on existing

libraries or remain between these two extremes.

For demonstration purposes I have implemented a very simple client programme in Perl that

accesses the previously presented square Web service (see figure 4.12). It uses the Perl module

Soap Lite6 that provides most functionality that is necessary for using SOAP Web services. The

programme simply reads a number from the command line, sends it to the statically specified

server, retrieves the results, and prints it to the screen.

The example initially creates a SOAP client object with the Soap Lite proxy() method that

takes the Web service’s URL as an argument; in this case it is running locally, i.e. on localhost.

Afterwards, the service’s function createAndRun() is executed with the input parameter number

as argument that is read from the command line and stored in the associative array \input;

the function result() is called immediately in the same line and returns the numeric id of the

started job that is used to control the job. It allows to query the job’s status – is it completed

or still running? – and to react accordingly.

The code shown in Figure 4.12 requests the result with the function getResults($jobid)

and prints it to the screen. It returns a reference to an associative array that contains, besides

result, the keys report, detailed_status, and result_url.

4.3 Concluding Remarks

It has been shown in this chapter how any command line tool can be implemented as a Servlet-

based Web service. Soaplab makes this task easy in most standard cases, although the under-

lying ACD format is not sufficient for output files that are not definable by the user. Examples

of how to solve this with small scripts wrapping the actual tools have been presented and are

generalisable to any other tool.

In summary, a fully working pipeline from a parallel corpus via sentence alignment to a

corpus aligned on a word level has been developed with state of the art tools. This pipeline

6Soap Lite Perl module: http://www.soaplite.com

45

can be extended by adding other existing tools and its components can be integrated by other

developers as well as be replaced by other tools and services that might be available in the

future.

46

Chapter 5

Results and Discussion

5.1 Evaluation

As stated in the introduction to this work, its aim is not to improve the results by the single

components involved in the platform, but rather to make related tasks more efficient by improv-

ing usability and availability. Therefore, the existing programmes that have been implemented

as Web services, i.e. Hunalign and the GIZA++ tools, do not need to be evaluated again; they

are well established and have not been changed during this work.

A formal evaluation of the whole platform is a very complex task. There are many unpre-

dictable factors that depend on the user’s aims and skills. An intuitive approach to an extrinsic

evaluation would be to give a task like ’Create a word-aligned corpus from a parallel corpus

using Hunalign and GIZA++’ to a number of human users with different background knowledge

and provide one group with the command line tools and make the other group solve the task

using this platform.

However, Web services are not directly accessible by human users, so they require another

tool like Taverna (see section 4.2.2) to create a workflow. Then, objective measures such as

the time used for the task and subjective measures such as user satisfaction would produce

comparable results. However, this evaluation would mainly allow conclusions about the actual

user interface, i.e. Taverna versus command line, but not necessarily correlate to the platform’s

usefulness.

Evaluation has to come closer to the scenario Web services are generally designed for: being

included into third-party software programmes. Providing functionality in a customisable and

efficient way is the platform’s actual task. In this sense, however, a Web service cannot be

compared to a command line tool as it is rather an additional functionality for specific needs; a

user who needs to run Hunalign and GIZA++ only once will not use a Web service and design

a workflow.

Reckoning that a full extrinsic evaluation of the platform is impossible in the context of this

work, the objectives that have been defined in section 1.2 will be evaluated in the following

sections.

47

5.1.1 Modularity

All the components in this platform are independent of each other. This implies that they can

be used in any order and number necessary. However, new modules can be provided but there

is no formal validation, i.e. the developer has to take care of compatibility of the input and

output interfaces. The modularity criterion has therefore been fulfilled with the limitation that

the syntactic compatibility has to be guaranteed manually.

5.1.2 Usability

To formally test Web services for usability and semantic compatibility, a model workflow is

generated in (Martens, 2003). A workflow module (here: a Web service) M is called usable, ’iff

there exists at least one environment U that utilizes M ’ (Martens, 2003). This has been shown

for the platform developed here by using all implemented Web services in the example pipeline

that makes use of all the components.

The second criterion, semantic compatibility is defined in relation to a Web service’s en-

vironment: if a system out of two components is usable, these components are semantically

compatible. This has been shown in the example pipeline as well, as the involved components

are able to work together in a workflow and to exchange data.

5.1.3 Robustness

Large data

The platform has been tested with the Hungarian-English test data provided by the Hunalign

package (30 kilobytes) and the French-English part of Europarl version 5 (315/278 megabytes

respectively) and works with both. This has been tested in a local network only. Additional

problems might arise when transferring data via a potentially slow and disrupted Internet

connection. However, this is a network technology issue and could not be tested systematically

here because this lies beyond this work’s focus.

Heavy load

An example programme that accesses the alignment Web service sequentially has been executed

five times in parallel which led to higher response times, but no substantial problems for the

server. Further tests have not been made as this issue depends mainly on the web server and

servlet container (in this work: Tomcat) rather than on the platform and its Web services.

5.1.4 Generalisability

This work has shown how to use Soaplab and the ACD format for any command line tool. In

the simplest case, it is sufficient to describe the tool’s inputs and outputs in a corresponding

ACD file. In more complex cases, it is necessary to write a wrapper around the tool that makes

the output file names definable by the user. It has been shown how to write wrapper scripts

48

for the complex case too. These methods can be applied for any command line tool where it is

somehow possible to detect the output file names.

5.1.5 Platform Independence

The choice for the Java-based servlet technology has made the platform available for any oper-

ating system for which the Java platform and a servlet container exist. Servlets are deployable

to any servlet container by design. It has not been tested systematically in this work whether

the generated Soaplab servlet is actually usable on every platform, but this can be expected

according to the specification of servlets.

5.1.6 Integration

For the central components of the pipeline, Hunalign and GIZA++, the output of the first is

not directly usable as input for the second. In order to solve the problem, the format conversion

tools Hun2Giza and Hun2Giza2 have been developed so that all components can be used in one

workflow.

5.2 Discussion and Future Work

It has been shown how to develop a collection of Web services to make existing language

processing tools available on the web and more easily usable. They can be applied in any order

and selection (modularity) and the methods can be applied to any command line tool, not only

in the field of NLP (generalisability). Additional tools to validate the interface compatibility

of the involved tools have been developed (integration). The platform can deal with large

amounts of data and serve multiple users at once (robustness) but does not deal with potential

networking problems and limitations in computational resources.

This leads to the conclusion that robustness is a potential problem when practically dealing

with Web services and large data. Slow connections can make the upload of large corpora a

time-consuming bottleneck; in the worst case, network interruptions make it even impossible

to use a Web service. To improve robustness, techniques need to be developed that deal with

networking problems.

An obvious starting point would be to exchange compressed files that are then extracted

locally to reduce the transfer sizes. Furthermore, an idea would be that users can provide their

data on some statically available web site and only provide the link; the service would try to

fetch the resources repeatedly if necessary. This does not reduce transfer time but – if the user

has such a static web site to his availability – would increase usability because the platform

took care of the re-initiation of interrupted transfers. However, this issue roots in the underlying

networking technology and, again, lies outside the focus of this work.

Regarding modularity, it would be desirable to define a format in which all involved services

accept and provide data as inputs and outputs respectively. Considering that all the platform’s

modules deal with corpora only (rather than, for instance, dictionaries, transfer grammars,

49

etc.), XCES (Ide, Bonhomme, and Romary, 2000) could be applied for this purpose. It is well

established and provides annotation tags for all the information typically used in a corpus. A

validation component would then be able to check a new module’s output for compatibility

with this format and certificate compatibility. However, XCES does not support the marking of

comparable corpora that can also form a kind of data to be used in a future processing pipeline.

50

Appendix A

Appendix: Files

A.1 Extract from the WSDL File for the Hunalign Web Service

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<w s d l : d e f i n i t i o n s targetNamespace=” h t t p : // l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s /

s e r v i c e s / a l i g n e r . hunal ign ” xmlns:apachesoap=” h t tp : //xml . apache . org /xml−
soap ” xmlns: impl=” h t t p : // l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s / s e r v i c e s / a l i g n e r .

hunal ign ” x m l n s : i n t f=” h t t p : // l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s / s e r v i c e s /

a l i g n e r . hunal ign ” xmlns :soapenc=” ht t p : // schemas . xmlsoap . org / soap /

encoding /” xmlns : tns1=” h t t p : // share . soaplab . org ” xmlns:wsdl=” h t t p : //

schemas . xmlsoap . org / wsdl /” xmlns:wsdlsoap=” h t tp : // schemas . xmlsoap . org /

wsdl / soap /” xmlns:xsd=” h t tp : //www. w3 . org /2001/XMLSchema”>

< !−−WSDL c r e a t e d by Apache Axis v e r s i o n : 1 .4

B u i l t on Apr 22 , 2006 (06 : 5 5 : 4 8 PDT)−−>
<wsd l : type s>

<schema targetNamespace=” h t t p : // share . soaplab . org ” xmlns=” ht t p : //www. w3 .

org /2001/XMLSchema”>

<import namespace=” ht t p : // l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s / s e r v i c e s / a l i g n e r .

hunal ign ”/>

[. . .]

</schema>

</ wsd l : type s>

<wsdl :message name=” descr ibeResponse ”>

<wsd l :pa r t name=” descr ibeReturn ” type=” x s d : s t r i n g ”/>

</ wsdl :message>

[. . .]

<wsdl :portType name=” A n a l y s i s S e r v i c e ”>

<wsd l : ope ra t i on name=”run” parameterOrder=” jobId ”>

<wsd l : i nput message=” impl :runRequest ” name=” runRequest ”/>

<wsdl :output message=” impl :runResponse ” name=” runResponse ”/>

<w s d l : f a u l t message=” impl :SoaplabExcept ion ” name=” SoaplabException

”/>

</ wsd l : ope ra t i on>

51

</ wsdl :portType>

[. . .]

<wsd l :b ind ing name=” a l i g n e r . hunal ignSoapBinding ” type=”

i m p l : A n a l y s i s S e r v i c e ”>

<wsd l soap :b ind ing s t y l e=” rpc ” t ranspor t=” h t t p : // schemas . xmlsoap . org /

soap / http ”/>

<wsd l : ope ra t i on name=”run”>

<wsd l soap :ope ra t i on soapAction=””/>

<wsd l : i nput name=” runRequest ”>

<wsdlsoap:body encod ingSty l e=” h t t p : // schemas . xmlsoap . org / soap /

encoding /” namespace=” h t t p : // ax i s1 . p ro to co l . s e r v i c e s . soaplab

. org ” use=”encoded”/>

</ wsd l : i nput>

<wsdl :output name=” runResponse ”>

<wsdlsoap:body encod ingSty l e=” h t t p : // schemas . xmlsoap . org / soap /

encoding /” namespace=” h t t p : // l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s /

s e r v i c e s / a l i g n e r . hunal ign ” use=”encoded”/>

</ wsdl :output>

<w s d l : f a u l t name=” SoaplabException ”>

<w s d l s o a p : f a u l t encod ingSty l e=” h t t p : // schemas . xmlsoap . org / soap /

encoding /” name=” SoaplabException ” namespace=” h t tp : //

l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s / s e r v i c e s / a l i g n e r . hunal ign ” use=

”encoded”/>

</ w s d l : f a u l t>

</ wsd l : ope ra t i on>

[. . .]

<wsd l : ope ra t i on name=”createAndRun”>

<wsd l soap :ope ra t i on soapAction=””/>

<wsd l : i nput name=”createAndRunRequest”>

<wsdlsoap:body encod ingSty l e=” h t t p : // schemas . xmlsoap . org / soap /

encoding /” namespace=” h t t p : // ax i s1 . p ro to co l . s e r v i c e s . soaplab

. org ” use=”encoded”/>

</ wsd l : i nput>

<wsdl :output name=”createAndRunResponse”>

<wsdlsoap:body encod ingSty l e=” h t t p : // schemas . xmlsoap . org / soap /

encoding /” namespace=” h t t p : // l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s /

s e r v i c e s / a l i g n e r . hunal ign ” use=”encoded”/>

</ wsdl :output>

<w s d l : f a u l t name=” SoaplabException ”>

<w s d l s o a p : f a u l t encod ingSty l e=” h t t p : // schemas . xmlsoap . org / soap /

encoding /” name=” SoaplabException ” namespace=” h t tp : //

l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s / s e r v i c e s / a l i g n e r . hunal ign ” use=

”encoded”/>

</ w s d l : f a u l t>

[. . .]

<wsd l : ope ra t i on name=”runAndWaitFor”>

52

<wsd l soap :ope ra t i on soapAction=””/>

<wsd l : i nput name=”runAndWaitForRequest”>

<wsdlsoap:body encod ingSty l e=” h t t p : // schemas . xmlsoap . org / soap /

encoding /” namespace=” h t t p : // ax i s1 . p ro to co l . s e r v i c e s . soaplab

. org ” use=”encoded”/>

</ wsd l : i nput>

<wsdl :output name=”runAndWaitForResponse”>

<wsdlsoap:body encod ingSty l e=” h t t p : // schemas . xmlsoap . org / soap /

encoding /” namespace=” h t t p : // l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s /

s e r v i c e s / a l i g n e r . hunal ign ” use=”encoded”/>

</ wsdl :output>

<w s d l : f a u l t name=” SoaplabException ”>

<w s d l s o a p : f a u l t encod ingSty l e=” h t t p : // schemas . xmlsoap . org / soap /

encoding /” name=” SoaplabException ” namespace=” h t tp : //

l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s / s e r v i c e s / a l i g n e r . hunal ign ” use=

”encoded”/>

</ w s d l : f a u l t>

</ wsd l : ope ra t i on>

[. . .]

</ wsd l : ope ra t i on>

<wsd l : ope ra t i on name=” ge tResu l t s ”>

<wsd l soap :ope ra t i on soapAction=””/>

<wsd l : i nput name=” getResu l t sRequest ”>

<wsdlsoap:body encod ingSty l e=” h t t p : // schemas . xmlsoap . org / soap /

encoding /” namespace=” h t t p : // ax i s1 . p ro to co l . s e r v i c e s . soaplab

. org ” use=”encoded”/>

</ wsd l : i nput>

<wsdl :output name=” getResu l t sResponse ”>

<wsdlsoap:body encod ingSty l e=” h t t p : // schemas . xmlsoap . org / soap /

encoding /” namespace=” h t t p : // l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s /

s e r v i c e s / a l i g n e r . hunal ign ” use=”encoded”/>

</ wsdl :output>

<w s d l : f a u l t name=” SoaplabException ”>

<w s d l s o a p : f a u l t encod ingSty l e=” h t t p : // schemas . xmlsoap . org / soap /

encoding /” name=” SoaplabException ” namespace=” h t tp : //

l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s / s e r v i c e s / a l i g n e r . hunal ign ” use=

”encoded”/>

</ w s d l : f a u l t>

</ wsd l : ope ra t i on>

[. . .]

</ wsd l :b ind ing>

<w s d l : s e r v i c e name=” A n a l y s i s S e r v i c e S e r v i c e ”>

<wsd l :po r t b inding=” i m p l : a l i g n e r . hunal ignSoapBinding ” name=” a l i g n e r .

hunal ign ”>

<wsd l soap :addre s s l o c a t i o n=” h t t p : // l o c a l h o s t : 8 0 8 0 / soaplab2−a x i s /

s e r v i c e s / a l i g n e r . hunal ign ”/>

53

</ wsd l :po r t>

</ w s d l : s e r v i c e>

</ w s d l : d e f i n i t i o n s>

54

A.2 The ACD file for Hunalign

appl : Hunalign [

documentation : ”A power fu l f r e e sentence l e v e l a l i g n e r f o r bu i l d i ng

p a r a l l e l corpora . ”

groups : ” Al igner ”

ve r s i on : ”1 .0”

executab l e : ”/home/ ca r s t en / hunal ign −1.0/ s r c / hunal ign / hunal ign ”

nonemboss : ”Y”

]

boolean : t ex t [

a d d i t i o n a l : ”Y”

prompt : ”The output should be in text format , ra the r than the d e f a u l t (

numeric) ladder format . ”

]

boolean : b i s e n t [

a d d i t i o n a l : ”Y”

prompt : ”Only b i s e n t e n c e s (one−to−one al ignment segments) are pr in ted . In

non−t ex t mode , t h e i r s t a r t i n g rung i s pr in ted . ”

]

i n f i l e : hand [

a d d i t i o n a l : ”Y”

comment : ” data d i r e c t ”

template : ’−hand=”$$ ” ’

prompt : ” S p e c i f i e s a f i l e conta in ing a manual al ignment . ”

]

boolean : r e a l i g n [

a d d i t i o n a l : ”Y”

prompt : ” I t e r a t i v e al ignment proce s s . ”

in fo rmat ion : ” I f t h i s opt ion i s set , the al ignment i s b u i l t in three

phases . After an i n i t i a l al ignment , the a lgor i thm h e u r i s t i c a l l y adds

items to the d i c t i o n a r y based on cooccur r ence s in the i d e n t i f i e d

b i s e n t e n c e s . Then i t re−runs the al ignment proce s s based on t h i s

l a r g e r d i c t i o n a r y . This opt ion i s recommended to ach i eve the h i ghe s t

p o s s i b l e al ignment q u a l i t y . I t i s not s e t by d e f a u l t because i t

approximately t r i p l e s the running time whi l e the q u a l i t y improvement

i t y i e l d s are t y p i c a l l y smal l . ”

]

boolean : u t f [

a d d i t i o n a l : ”Y”

prompt : ”Adapt charac t e r count to UTF−8 encoded text . ”

]

i n t e g e r : thresh [

a d d i t i o n a l : ”Y”

55

prompt : ”Don ’ t p r i n t out segments with s co r e lower than n /100.”

template : ’− thresh=$$ ’

]

i n t e g e r : ppthresh [

a d d i t i o n a l : ”Y”

prompt : ” F i l t e r rungs with l e s s than n/100 average s co r e in t h e i r

v i c i n i t y . ”

template : ’−ppthresh=$$ ’

]

i n t e g e r : headerthresh [

a d d i t i o n a l : ”Y”

prompt : ” F i l t e r a l l rungs at the s t a r t and end o f t e x t s u n t i l f i n d i n g a

r e l i a b l y p l a u s i b l e r eg i on . ”

template : ’−headerthresh=$$ ’

]

i n t e g e r : topothresh [

a d d i t i o n a l : ”Y”

prompt : ” F i l t e r rungs with l e s s than n percent o f one−to−one segments in

t h e i r v i c i n i t y . ”

template : ’− topothresh=$$ ’

]

i n f i l e : d i c t i o n a r y [

parameter : ”Y”

comment : ” data d i r e c t ”

prompt : ” Dic t ionary f i l e . Can be a zero−byte f i l e . ”

]

i n f i l e : source [

parameter : ”Y”

comment : ” data d i r e c t ”

prompt : ”Segmented source sentences , one sentence per l i n e . ”

]

i n f i l e : t a r g e t [

parameter : ”Y”

comment : ” data d i r e c t ”

prompt : ”Segmented t a r g e t sentences , one sentence per l i n e . ”

]

o u t f i l e : a l i g n [

d e f a u l t : s tdout

]

56

A.3 The Script hun2giza.pl

#!/ usr / b in / p e r l

use s t r i c t ;

use Getopt : : Std ;

i f (@ARGV != 4) {
print STDERR ”Usage : hun2giza . p l −o [source | t a r g e t] −f <hunal ign ouput

f i l e >\n” ;

print STDERR ”Use −o source to r e t r i e v e the source s en t ence s and” ;

print STDERR ” −o t a r g e t to get the t a r g e t s en t ence s .\n” ;

exit ;

}
our ($opt o , $ o p t f) ;

ge topt s (’ o : f : ’) ;

unless ($opt o eq ’ source ’ or $opt o eq ’ t a r g e t ’) {
print STDERR ”Bad parameter f o r −o . Use ’ source ’ or ’ t a r g e t ’ !\ n” ;

exit ;

}
my $ b i s e n t f i l e = $ o p t f ;

my $count =0;

open BISENT, ”<” . $ b i s e n t f i l e or die $! ;

while (my $ l i n e = <BISENT>) {
$count++;

i f ($ l i n e =˜ /ˆ([ˆ\ t] ∗) \ t ([ˆ\ t] ∗) \ t /) {
i f ($opt o eq ’ source ’) { print $1 . ”\n” ; }
else { print $2 . ”\n” ; }

}
else {

print STDERR ” Error in input f i l e , sk ipp ing l i n e $count :\n” ;

print STDERR $ l i n e ;

}
}
close (BISENT) ;

57

A.4 The ACD File for hun2giza.pl

appl : Hun2Giza [

documentation : ”Convert a Hunalign output f i l e i n to two p a r a l l e l t ex t

f i l e s conta in ing the a l i gned sentence p a i r s on by each l i n e . ”

groups : ” Al igner ”

nonemboss : ”Y”

executab l e : ”/home/ ca r s t en / bin / hun2giza . p l ”

]

l i s t : outputtype [

q u a l i f i e r : o

standard : ”Y”

minimum : 1

maximum : 1

va lue s : ” source ; t a r g e t ”

prompt : ”Output source or t a r g e t s en t ence s . ”

]

i n f i l e : f i l e [

q u a l i f i e r : f

comment : ” data d i r e c t ”

standard : ”Y”

prompt : ” Hunalign output f i l e in t ext format . ”

]

o u t f i l e : r e s u l t [

d e f a u l t : ” stdout ”

]

58

A.5 The Script hun2giza2.pl

#!/ usr / b in / p e r l

use s t r i c t ;

i f (@ARGV < 1) {
print ”Usage : ” ;

print ” hun2giza2 . p l <Hunalign output f i l e > [source s en t ence s f i l e] [

t a r g e t s en t ence s f i l e] ” ;

exit ;

}

my $ b i s e n t f i l e = $ARGV[0] ;

my $ s o u r c e f i l e = ” source ” ;

my $ t a r g e t f i l e = ” t a r g e t ” ;

my $count =0;

i f ($#ARGV >= 1) {
$ s o u r c e f i l e = $ARGV[1] ;

}
i f ($#ARGV >= 2) {

$ t a r g e t f i l e = $ARGV[2] ;

}

open BISENT, ”<” . $ b i s e n t f i l e or die $! ;

open SOURCE, ”>” . $ s o u r c e f i l e or die $! ;

open TARGET, ”>” . $ t a r g e t f i l e or die $! ;

while (my $ l i n e = <BISENT>) {
$count++;

i f ($ l i n e =˜ /ˆ([ˆ\ t] ∗) \ t ([ˆ\ t] ∗) \ t /) {
print SOURCE ”$1\n” ;

print TARGET ”$2\n” ;

}
else {

print STDERR ” Error in input f i l e , sk ipp ing l i n e $count :\n” ;

print STDERR $ l i n e ;

}
}
close (BISENT) ;

close (SOURCE) ;

close (TARGET) ;

59

A.6 The ACD File for hun2giza2.pl

appl : Hun2Giza2 [

documentation : ”Convert a Hunalign output f i l e i n to two p a r a l l e l t ex t

f i l e s conta in ing the a l i gned sentence p a i r s on by each l i n e . ”

groups : ” Al igner ”

nonemboss : ”Y”

executab l e : ”/home/ ca r s t en / bin / hun2giza2 . p l ”

]

i n f i l e : f i l e [

comment : ” data d i r e c t ”

parameter : ”Y”

prompt : ” Hunalign output f i l e in t ext format . ”

]

o u t f i l e : source [

d e f a u l t : ” source ”

parameter : ”Y”

]

o u t f i l e : t a r g e t [

d e f a u l t : ” t a r g e t ”

parameter : ”Y”

]

60

A.7 The script plan2snt.sh

#!/ bin / bash

GIZAPATH=/home/ ca r s t en / giza−pp/GIZA++−v2

i f [$# − l t 6]

then

echo ”Usage : ”

echo ”$0 <source sentence f i l e > <t a r g e t sentence f i l e > <source vocabulary

output f i l e > <t a r g e t vocabulary output f i l e > <GIZA format s entence s

output f i l e (s o u r c e t a r g e t> <GIZA format s entence s output f i l e (

t a r g e t s o u r c e)>”

exit

f i

s t r i p path name and s u f f i x e s . tok and . t x t :

INFILE1=$ (basename $ (echo $1 | sed −e ’ s /\ . txt$ // ’ −e ’ s /\ . tok$ // ’))

INFILE2=$ (basename $ (echo $2 | sed −e ’ s /\ . txt$ // ’ −e ’ s /\ . tok$ // ’))

$GIZAPATH/ p l a i n 2 s n t . out $1 $2

cat $INFILE1 . vcb > $3

cat $INFILE2 . vcb > $4

cat $INFILE1\ $INFILE2 . snt > $5

cat $INFILE2\ $INFILE1 . snt > $6

61

A.8 The ACD file for plain2snt.sh

appl : p l a i n 2 s n t [

documentation : ” Ca l l the GIZA++ t o o l p l a i n 2 s n t which c r e a t e s vocabulary

f i l e s f o r both given t e x t s and a GIZA format sentence f i l e . ”

groups : ” Al igner ”

nonemboss : ”Y”

executab l e : ”/home/ ca r s t en / bin / p l a i n 2 s n t . sh”

]

i n f i l e : source [

prompt : ” F i l e conta in ing s en tence s in source language . ”

parameter : ”Y”

comment : ” data d i r e c t ”

]

i n f i l e : t a r g e t [

prompt : ” F i l e conta in ing s en tence s in t a r g e t language . ”

parameter : ”Y”

comment : ” data d i r e c t ”

]

o u t f i l e : voc1 [

prompt : ” Vocabulary f i l e f o r source s en t ence s . ”

parameter : ”Y”

]

o u t f i l e : voc2 [

prompt : ” Vocabulary f i l e f o r t a r g e t s en t ence s . ”

parameter : ”Y”

]

o u t f i l e : s entence s1 [

prompt : ” Sentences in GIZA++ format (source −> t a r g e t) . ”

parameter : ”Y”

]

o u t f i l e : s entence s2 [

prompt : ” Sentences in GIZA++ format . (t a r g e t −> source) ”

parameter : ”Y”

]

62

A.9 The ACD file for mkcls

appl : mkcls [

documentation : ”A t o o l to t r a i n word c l a s s e s by us ing the maximum

l i k e l i h o o d c r i t e r i o n . ”

groups : ” Al igner ”

nonemboss : ”Y”

executab l e : ”/home/ ca r s t en / giza−pp/mkcls−v2/mkcls ”

]

i n t e g e r : c l a s s e s [

a d d i t i o n a l : ”Y”

template : ”−c$$ ”

prompt : ”Number o f c l a s s e s to generate . ”

]

i n t e g e r : runs [

a d d i t i o n a l : ”Y”

d e f a u l t : 1

template : ”−n$$”

prompt : ”Number o f opt imiza t i on runs (l a r g e r => b e t t e r r e s u l t s) . ”

]

i n f i l e : corpus [

standard : ”Y”

comment : ” data d i r e c t ”

template : ”−p$$”

prompt : ” Filename o f t r a i n i n g corpus . ”

]

o u t f i l e : output [

standard : ”Y”

template : ”−V$$”

prompt : ”Output c l a s s e s . ”

]

63

A.10 The script giza.sh

#!/ bin / bash

GIZAPATH=/home/ ca r s t en / giza−pp/GIZA++−v2

OUT=g i za . z ip

CONFIG= ’ ’

i f [$# − l t 3]

then

echo ”Usage : ”

echo ” $0 <source vocabulary f i l e > <t a r g e t vocabulary f i l e > <GIZA++

sentence s f i l e > [< c o n f i g f i l e >] [<output f i l e >] [< d i c t i o n a r y f i l e >]”

exit

e l i f [$# −ge 4]

then

CONFIG=$4

f i

i f [$# −ge 5]

then

OUT=$5

f i

i f [$# −ge 6]

then

DICT=”−d i c t i o n a r y $6”

f i

GIZAOUT=$ (basename $OUT . z ip) # output f i l ename e x t e n s i o n must be . z i p

$GIZAPATH/GIZA++ $CONFIG −S $1 −T $2 −C $3 $DICT −o $GIZAOUT

z ip $OUT $GIZAOUT.∗

64

A.11 The ACD file for giza.sh

appl : Giza [

documentation : ”GIZA++ i s a program f o r a l i g n i n g words and sequences o f

words in sentence a l i gned corpora . ”

groups : ” Al igner ”

nonemboss : ”Y”

executab l e : ”/home/ ca r s t en / bin / g i za . sh”

]

i n f i l e : c o n f i g [

comment : ” data d i r e c t ”

parameter : ”Y”

prompt : ”GIZA++ c o n f i g u r a t i o n f i l e ”

]

i n f i l e : source [

comment : ” data d i r e c t ”

parameter : ”Y”

prompt : ” Source language vocabulary f i l e . ”

]

i n f i l e : t a r g e t [

comment : ” data d i r e c t ”

parameter : ”Y”

prompt : ” Target language vocabulary f i l e . ”

]

i n f i l e : s en t ence s [

comment : ” data d i r e c t ”

parameter : ”Y”

prompt : ”GIZA++ sentence s f i l e . ”

]

i n f i l e : d i c t i o n a r y [

comment : ” data d i r e c t ”

a d d i t i o n a l : ”Y”

template : ”$$”

prompt : ”A d i c t i o n a r y f i l e in GIZA++ format . ”

]

o u t f i l e : g i z a [

a d d i t i o n a l : ”Y”

parameter : ”Y”

comment : bindata

extens i on : ” z ip ”

d e f a u l t : ” g i za . z ip ”

]

65

Bibliography

References

[Abney1991] Abney, S. 1991. Parsing by chunks. Principle-based parsing, pages 257–278.

[Abney1997] Abney, S. 1997. Part-of-speech tagging and partial parsing. Corpus-based methods

in language and speech processing, 2.

[Bahl, Jelinek, and Mercer1990] Bahl, L.R., F. Jelinek, and R.L. Mercer. 1990. A maximum

likelihood approach to continuous speech recognition. Readings in speech recognition, pages

308–319.

[Baum1972] Baum, L.E. 1972. An inequality and associated maximization technique in statis-

tical estimation for probabilistic functions of Markov processes. Inequalities, 3(1):1–8.

[Bourigault1992] Bourigault, D. 1992. Surface grammatical analysis for the extraction of termi-

nological noun phrases. In Proceedings of the 14th conference on Computational linguistics-

Volume 3, pages 977–981. Association for Computational Linguistics.

[Brill1994] Brill, E. 1994. Some advances in transformation-based part of speech tagging. In

Proceedings of the twelfth national conference on Artificial intelligence (vol. 1), pages 722–

727. American Association for Artificial Intelligence.

[Brown1996] Brown, M.R. 1996. FastCGI specification. Open Market Inc., http://fastcgi. idle.

com/kit/doc/fcgi-spec. html.

[Brown et al.1990] Brown, P.F., J. Cocke, S.A.D. Pietra, V.J.D. Pietra, F. Jelinek, J.D. Laf-

ferty, R.L. Mercer, and P.S. Roossin. 1990. A statistical approach to machine translation.

Computational Linguistics, 16(2):85.

[Brown, Lai, and Mercer1991] Brown, P.F., J.C. Lai, and R.L. Mercer. 1991. Aligning sen-

tences in parallel corpora. In Proceedings of the 29th annual meeting on Association for

Computational Linguistics, pages 169–176. Association for Computational Linguistics.

[Brown et al.1993] Brown, P.F., V.J.D. Pietra, S.A.D. Pietra, and R.L. Mercer. 1993. The

mathematics of statistical machine translation: Parameter estimation. Computational Lin-

guistics, 19(2):263–311.

66

[Chen1993] Chen, S.F. 1993. Aligning sentences in bilingual corpora using lexical information.

In Proceedings of the 31st annual meeting on Association for Computational Linguistics,

pages 9–16. Association for Computational Linguistics.

[Chiang2005] Chiang, D. 2005. A hierarchical phrase-based model for statistical machine trans-

lation. In Proceedings of the 43rd Annual Meeting on Association for Computational Lin-

guistics, pages 263–270. Association for Computational Linguistics.

[Chiang et al.2005] Chiang, D., A. Lopez, N. Madnani, C. Monz, P. Resnik, and M. Subotin.

2005. The Hiero machine translation system: Extensions, evaluation, and analysis. In

Proceedings of the conference on Human Language Technology and Empirical Methods in

Natural Language Processing, page 786. Association for Computational Linguistics.

[Christensen et al.2001] Christensen, E., F. Curbera, G. Meredith, and S. Weerawarana. 2001.

Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/2001/NOTE-

wsdl-20010315.

[Church1988] Church, K.W. 1988. A stochastic parts program and noun phrase parser for unre-

stricted text. In Proceedings of the second conference on Applied natural language processing,

pages 136–143. Association for Computational Linguistics.

[Cunningham et al.2001] Cunningham, H., D. Maynard, V. Tablan, C. Ursu, and K. Bontcheva.

2001. Developing language processing components with GATE. GATE v2. 0 User Guide,

University of Sheffield.

[Curbera et al.2002] Curbera, F., M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-

awarana. 2002. Unraveling the Web services web: an introduction to SOAP, WSDL, an-

dUDDI. IEEE Internet computing, 6(2):86–93.

[Davidson and Coward1999] Davidson, J.D. and D. Coward. 1999. Java servlet specification,

V2. 2. Final Release, December.

[Dempster et al.1977] Dempster, A.P., N.M. Laird, D.B. Rubin, et al. 1977. Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series

B (Methodological), 39(1):1–38.

[Diab, Hacioglu, and Jurafsky2004] Diab, M., K. Hacioglu, and D. Jurafsky. 2004. Automatic

tagging of Arabic text: From raw text to base phrase chunks. In Proceedings of HLT-NAACL

2004: Short Papers on XX, pages 149–152. Association for Computational Linguistics.

[Ferrucci and Lally2004] Ferrucci, D. and A. Lally. 2004. UIMA: an architectural approach

to unstructured information processing in the corporate research environment. Natural

Language Engineering, 10(3-4):348.

[Fielding et al.1999] Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. 1999. Hypertext transfer protocol–HTTP/1.1.

67

[Franks et al.1999] Franks, J., P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luo-

tonen, and L. Stewart. 1999. RFC2617: HTTP authentication: basic and digest access

authentication. Internet RFCs.

[Gale and Church1994] Gale, W.A. and K.W. Church. 1994. A program for aligning sentences

in bilingual corpora. Computational linguistics, 19(1):75–102.

[Gough and Way2003] Gough, N. and A. Way. 2003. Controlled generation in example-based

machine translation. In MT Summit IX, pages 133–140. Citeseer.

[Gough and Way2004a] Gough, N. and A. Way. 2004a. Example-based controlled translation.

In Proceedings of the Ninth EAMT Workshop, pages 73–81. Citeseer.

[Gough and Way2004b] Gough, N. and A. Way. 2004b. Robust large-scale EBMT with marker-

based segmentation. In Proceedings of the 10th International Conference on Theoretical and

Methodological Issues in Machine Translation (TMI-04), pages 95–104. Citeseer.

[Gough, Way, and Hearne2002] Gough, N., A. Way, and M. Hearne. 2002. Example-based ma-

chine translation via the Web. Machine Translation: From Research to Real Users, pages

74–83.

[Green1979] Green, TRG. 1979. The necessity of syntax markers: Two experiments with artifi-

cial languages. Journal of Verbal Learning and Verbal Behavior, 18(4):481–496.

[Gudgin et al.2001] Gudgin, M., M. Hadley, N. Mendelsohn, J.J. Moreau, H.F. Nielsen, A. Kar-

markar, and Y. Lafon. 2001. SOAP Version 1.2. W3C Working Draft, 9.

[Gundavaram1996] Gundavaram, S. 1996. CGI programming on the World Wide Web. O’Reilly

Sebastopol, CA.

[Haas and Brown2004] Haas, H. and A. Brown. 2004. Web Services Glossary.

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211.

[Hearne et al.2007] Hearne, M., J. Tinsley, V. Zhechev, and A. Way. 2007. Capturing transla-

tional divergences with a statistical tree-to-tree aligner. In Proceedings of the 11th Interna-

tional Conference on Theoretical and Methodological Issues in Machine Translation (TMI

07), pages 85–94. Citeseer.

[Hunter and Crawford2001] Hunter, J. and W. Crawford. 2001. Java servlet programming.

O’Reilly Media.

[Ide, Bonhomme, and Romary2000] Ide, N., P. Bonhomme, and L. Romary. 2000. An XML-

based Encoding Standard for Linguistic Corpora. In Proceedings of the Second International

Conference on Language Resources and Evaluation, pages 825–830. Citeseer.

[Kay and Röscheisen1993] Kay, M. and M. Röscheisen. 1993. Text-translation alignment. Com-

putational Linguistics, 19(1):121–142.

68

[Koehn2004] Koehn, P. 2004. Pharaoh: a beam search decoder for phrase-based statistical

machine translation models. Machine translation: From real users to research, pages 115–

124.

[Koehn2005] Koehn, P. 2005. Europarl: A parallel corpus for statistical machine translation. In

MT summit, volume 5. Citeseer.

[Koehn et al.2007] Koehn, P., H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi,

B. Cowan, W. Shen, C. Moran, R. Zens, et al. 2007. Moses: Open source toolkit for

statistical machine translation. In Proceedings of the 45th Annual Meeting of the ACL on

Interactive Poster and Demonstration Sessions, pages 177–180. Association for Computa-

tional Linguistics.

[Ma2006] Ma, X. 2006. Champollion: A robust parallel text sentence aligner. In Proceedings of

the fifth international conference on Language Resources and Evaluation (LREC). Citeseer.

[Maamouri et al.2004] Maamouri, M., A. Bies, T. Buckwalter, and W. Mekki. 2004. The penn

arabic treebank: Building a large-scale annotated arabic corpus. In NEMLAR Conference

on Arabic Language Resources and Tools, pages 102–109. Citeseer.

[Marcu and Wong2002] Marcu, D. and W. Wong. 2002. A phrase-based, joint probability model

for statistical machine translation. In Proceedings of the ACL-02 conference on Empirical

methods in natural language processing-Volume 10, page 139. Association for Computational

Linguistics.

[Martens2003] Martens, A. 2003. Usability of web services. In Fourth International Conference

on Web Information Systems Engineering Workshops, 2003. Proceedings, pages 182–190.

[Melamed1996] Melamed, I.D. 1996. A geometric approach to mapping bitext correspondence.

In Proceedings of the Conference on Empirical Methods in Natural Language Processing,

pages 1–12.

[Melamed1997] Melamed, I.D. 1997. A word-to-word model of translational equivalence. In Pro-

ceedings of the eighth conference on European chapter of the Association for Computational

Linguistics, pages 490–497. Association for Computational Linguistics.

[Molina and Pla2002] Molina, A. and F. Pla. 2002. Shallow parsing using specialized hmms.

The Journal of Machine Learning Research, 2:595–613.

[Moore2002] Moore, R. 2002. Fast and accurate sentence alignment of bilingual corpora. Ma-

chine Translation: From Research to Real Users, pages 135–144.

[Nesson, Shieber, and Rush2006] Nesson, R., S.M. Shieber, and A. Rush. 2006. Induction of

probabilistic synchronous tree-insertion grammars for machine translation. In Proceedings

of the 7th Conference of the Association for Machine Translation in the Americas (AMTA

2006), Boston, Massachusetts, pages 8–12. Citeseer.

69

[Och1995] Och, F.J. 1995. Maximum-Likelihood-Schätzung von Wortkategorien mit Ver-

fahren der kombinatorischen Optimierung. Studienarbeit, Friedrich-Alexander-Universität,

Erlangen-Nürnberg, Germany.

[Och1999] Och, F.J. 1999. An efficient method for determining bilingual word classes. In Pro-

ceedings of the ninth conference on European chapter of the Association for Computational

Linguistics, pages 71–76. Association for Computational Linguistics.

[Och and Ney2000] Och, F.J. and H. Ney. 2000. A comparison of alignment models for statistical

machine translation. In Proceedings of the 18th conference on Computational linguistics-

Volume 2, pages 1086–1090. Association for Computational Linguistics.

[Och and Ney2003] Och, F.J. and H. Ney. 2003. A systematic comparison of various statistical

alignment models. Computational Linguistics, 29(1):19–51.

[Och et al.1999] Och, F.J., C. Tillmann, H. Ney, et al. 1999. Improved alignment models for

statistical machine translation. In Proc. of the Joint SIGDAT Conf. on Empirical Methods

in Natural Language Processing and Very Large Corpora, pages 20–28.

[Oinn et al.2004] Oinn, T., M. Addis, J. Ferris, D. Marvin, M. Greenwood, T. Carver, M.R.

Pocock, A. Wipat, and P. Li. 2004. Taverna: a tool for the composition and enactment of

bioinformatics workflows. Bioinformatics.

[Oinn et al.2006] Oinn, T., M. Greenwood, M. Addis, M.N. Alpdemir, J. Ferris, K. Glover,

C. Goble, A. Goderis, D. Hull, D. Marvin, et al. 2006. Taverna: Lessons in creating a

workflow environment for the life sciences. Concurrency and Computation: Practice and

Experience, 18(10):1067–1100.

[Papineni et al.2002] Papineni, K., S. Roukos, T. Ward, and W.J. Zhu. 2002. BLEU: a method

for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting

on association for computational linguistics, pages 311–318. Association for Computational

Linguistics.

[Peterson et al.2009] Peterson, D., S. Gao, A. Malhotra, C.M. Sperberg-McQueen, and H.S.

Thompson. 2009. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes.

http://www.w3.org/TR/2009/WD-xmlschema11-2-20091203.

[Ramshaw and Marcus1995] Ramshaw, L.A. and M.P. Marcus. 1995. Text chunking using

transformation-based learning. In Proceedings of the Third ACL Workshop on Very Large

Corpora, pages 82–94. Cambridge MA, USA.

[Rice et al.2000] Rice, P., I. Longden, A. Bleasby, et al. 2000. EMBOSS: the European molecular

biology open software suite. Trends in genetics, 16(6):276–277.

[Samuelsson and Volk2006] Samuelsson, Y. and M. Volk. 2006. Phrase alignment in parallel

treebanks. In Proc. of the Fifth Workshop on Treebanks and Linguistic Theories, pages

91–102.

70

[Sandvig2004] Sandvig, J.C. 2004. Active Server Pages. The Internet Encyclopedia, pages 1–10.

[Senger, Rice, and Oinn2003] Senger, M., P. Rice, and T. Oinn. 2003. Soaplab-a unified Sesame

door to analysis tools. In Proceedings of the UK e-Science All Hands Meeting, volume 18.

Citeseer.

[Simard and Plamondon1998] Simard, M. and P. Plamondon. 1998. Bilingual sentence align-

ment: Balancing robustness and accuracy. Machine Translation, 13(1):59–80.

[Skut and Brants1998] Skut, W. and T. Brants. 1998. Chunk tagger-statistical recognition of

noun phrases. Arxiv preprint cmp-lg/9807007.

[Stroppa and Way2006] Stroppa, N. and A. Way. 2006. MaTrEx: the DCU machine translation

system for IWSLT 2006. In Proceedings of the International Workshop on Spoken Language

Translation, pages 31–36. Citeseer.

[Varga et al.2005] Varga, D., P. Halácsy, A. Kornai, M.C. Inc, V. Nagy, L. Németh, and V. Trón.

2005. Parallel corpora for medium density languages. Recent Advances in Natural Language

Processing IV: Selected Papers from RANLP 2005.

[Vogel, Ney, and Tillmann1996] Vogel, S., H. Ney, and C. Tillmann. 1996. HMM-based word

alignment in statistical translation. Proceedings of the 16th conference on Computational

linguistics-Volume 2, pages 836–841.

[Wahlster2000] Wahlster, W. 2000. Verbmobil: foundations of speech-to-speech translation.

Springer.

[Way and Gough2003] Way, A. and N. Gough. 2003. wEBMT: developing and validating an

example-based machine translation system using the world wide web. Computational Lin-

guistics, 29(3):421–457.

[Weaver1955] Weaver, W. 1955. Translation. Machine translation of languages, 14:15–23.

[Wu1994] Wu, D. 1994. Aligning a parallel English-Chinese corpus statistically with lexical

criteria. In Annual Meeting – Association for Computational Linguistics, volume 32, pages

80–87. Association for Computational Linguistics.

[Zhechev and Way2008] Zhechev, V. and A. Way. 2008. Automatic generation of parallel tree-

banks. In Proceedings of the 22nd International Conference on Computational Linguistics-

Volume 1, pages 1105–1112. Association for Computational Linguistics.

71

	Introduction
	Motivation
	Objectives
	Context
	PANACEA
	ELDA

	Related Work
	GATE
	UIMA

	Terminology

	Alignment
	Introduction
	Sentence Alignment
	Length-based Approaches
	Approaches Based on Lexical Information
	State of the Art
	Different Transcriptions

	Sub-sentence Alignment
	Word-based Alignment
	Chunk Alignment
	Sub-Tree Alignment

	Web Services
	Introduction
	Describing a Web Service with WSDL
	Abstract WSDL Elements
	WSDL and SOAP
	SOAP Implementations

	REST
	Web Application Technologies
	The Common Gateway Interface (CGI)
	Java Servlets
	Comparing CGI and Java Servlets
	Other Technologies

	Development of a Web-based Alignment Platform
	From Command Line Tools to Web Services
	Soaplab
	Integrating Components

	Accessing and Using Web Services
	Soaplab Built-in Clients
	Taverna
	Programmatic Access

	Concluding Remarks

	Results and Discussion
	Evaluation
	Modularity
	Usability
	Robustness
	Generalisability
	Platform Independence
	Integration

	Discussion and Future Work

	Appendix: Files
	Extract from the WSDL File for the Hunalign Web Service
	The ACD file for Hunalign
	The Script hun2giza.pl
	The ACD File for hun2giza.pl
	The Script hun2giza2.pl
	The ACD File for hun2giza2.pl
	The script plan2snt.sh
	The ACD file for plain2snt.sh
	The ACD file for mkcls
	The script giza.sh
	The ACD file for giza.sh

