
 

 

 

SEVENTH FRAMEWORK PROGRAMME 

THEME 3 

Information and communication Technologies 

 

 

PANACEA Project 
Grant Agreement no.: 248064 

Platform for Automatic, Normalized Annotation and 

Cost-Effective Acquisition 
of Language Resources for Human Language Technologies 

D3.1 

Architecture and design of the platform 

 

 

 

Dissemination Level:  Public 

Delivery Date: July 16th 2010 

Status – Version: Final 

Author(s) and Affiliation: Marc Poch (UPF), Prokopis Prokopidis(ILSP), Gregor 
Thurmair (Linguatec), Carsten Schnober, (ELDA), 
Riccardo Del Gratta (ILC-CNR), Núria Bel (UPF), Olivier 
Hamon (ELDA)  

 

http://projectmanagement.panacea-lr.eu:9950/users/prokopis


 

 
 
 

  D3.1 Architecture and design of the platform 
 

 

 
 
This document is part of technical documentation generated in the PANACEA Project, Platform 
for Automatic, Normalized Annotation and Cost-Effective Acquisition (Grant Agreement no. 
248064). 
 

 
 

 

This documented is licensed under a Creative Commons Attribution 3.0 Spain License. To view 
a copy of this license, visit http://creativecommons.org/licenses/by/3.0/es/. 

 

Please send feedback and questions on this document to: iulatrl@upf.edu 

TRL Group (Tecnologies dels Recursos Lingüístics), Institut Universitari de Lingüística 
Aplicada, Universitat Pompeu Fabra (IULA-UPF) 

 

 



D3.1 Architecture and design of the platform 

 

 

 
i 

1 Introduction ..................................................................................................................................... 1 

2 Terminology .................................................................................................................................... 3 

2.1 Definitions .................................................................................................................................. 3 

2.2 Acronyms ................................................................................................................................... 4 

3 Goals ................................................................................................................................................ 5 

4 Current state of the art. Analysis of existing tendencies, approaches and tools .............................. 6 

4.1 Frameworks ................................................................................................................................ 6 

4.1.1 UIMA .............................................................................................................................. 6 

4.1.1.1 U-compare ............................................................................................................... 8 

4.1.2 GATE .............................................................................................................................. 9 

4.1.3 Concluding remarks. Comparative analysis and recommendations. ............................. 10 

4.2 Web Services ............................................................................................................................ 11 

4.2.1 WSDL ............................................................................................................................ 11 

4.2.2 SOAP ............................................................................................................................. 13 

4.2.3 REST ............................................................................................................................. 16 

4.2.4 AXIS .............................................................................................................................. 17 

4.2.5 Common interfaces and tool integration ....................................................................... 17 

4.2.6 Metadata / Ontology / Closed vocabularies ................................................................... 18 

4.2.7 Concluding remarks. Comparative analysis and recommendations. ............................. 19 

4.3 Workflow systems .................................................................................................................... 19 

4.3.1 Triana ............................................................................................................................. 20 

4.3.2 Kepler ............................................................................................................................ 22 

4.3.3 Taverna (myGrid) .......................................................................................................... 25 

4.3.4 LoonyBin ....................................................................................................................... 29 

4.3.5 Concluding remarks. Comparative analysis and recommendations. ............................. 31 

4.4 Grid infrastructure .................................................................................................................... 32 

4.4.1 Globus ........................................................................................................................... 32 

4.4.2 EGEE ............................................................................................................................. 34 

4.4.3 MyGrid .......................................................................................................................... 37 

4.4.4 TextGrid ........................................................................................................................ 40 

4.4.5 NorduGrid ..................................................................................................................... 41 

4.4.6 Concluding remarks. Comparative analysis and recommendations. ............................. 42 

4.5 The Registry ............................................................................................................................. 43 

4.5.1 UDDI ............................................................................................................................. 43 

4.5.2 Feta ................................................................................................................................ 43 

4.5.3 BioCatalogue ................................................................................................................. 44 



D3.1 Architecture and design of the platform 

 

 

 
ii 

4.5.4 Concluding remarks. Comparative analysis and recommendations. ............................. 45 

4.6 Wrappers .................................................................................................................................. 46 

4.6.1 Soaplab .......................................................................................................................... 46 

4.6.2 Concluding remarks. Comparative analysis and recommendations. ............................. 49 

4.7 Sharing research objects (Workflows, ontology, etc.).............................................................. 49 

4.7.1 myExperiment ............................................................................................................... 49 

4.7.2 Concluding remarks. Comparative analysis and recommendations. ............................. 50 

4.8 Relevant projects ...................................................................................................................... 51 

4.8.1 KYOTO project ............................................................................................................. 51 

4.8.1.1 The Kyoto Annotation Framework (KAF) ............................................................ 52 

4.8.2 ACCURAT .................................................................................................................... 54 

5 PANACEA Platform requirements ............................................................................................... 55 

6 PANACEA Platform design .......................................................................................................... 55 

6.1 Travelling object. Corpus and data format ............................................................................... 55 

6.1.1 Introduction ................................................................................................................... 55 

6.1.2 Crawling and boilerplate removal ................................................................................. 56 

6.1.3 Text processing .............................................................................................................. 61 

6.1.3.1 Sentence splitting and tokenization ....................................................................... 61 

6.1.3.2 POS Tagging and lemmatization ........................................................................... 62 

6.1.3.3 Constituency and/or dependency parsing .............................................................. 64 

6.1.4 Alignment ...................................................................................................................... 67 

6.1.5 Revision and distribution metadata ............................................................................... 69 

6.2 Common interfaces design ....................................................................................................... 69 

6.3 PANACEA Platform technologies ........................................................................................... 71 

6.3.1 Options .......................................................................................................................... 71 

6.3.1.1 Option 1: MyGrid environment ............................................................................. 71 

6.3.1.2 Option 2: Large scale Grids ................................................................................... 73 

6.3.1.3 Option 3: Fallback position: UIMA / GATE ......................................................... 73 

6.3.2 Primary option, future research and alternatives ........................................................... 73 

7 Workplan ....................................................................................................................................... 75 

7.1 To-do list .................................................................................................................................. 75 

7.1.1 Travelling Object ........................................................................................................... 75 

7.1.2 Web Services ................................................................................................................. 75 

7.1.2.1 General .................................................................................................................. 75 



D3.1 Architecture and design of the platform 

 

 

 
iii 

7.1.2.2 Common Interfaces ............................................................................................... 75 

7.1.2.3 Soaplab .................................................................................................................. 76 

7.1.2.4 AXIS ...................................................................................................................... 76 

7.1.2.5 Alternatives............................................................................................................ 77 

7.1.3 Workflow editor and engine .......................................................................................... 77 

7.1.3.1 Workflow Editor .................................................................................................... 77 

7.1.4 Registry ......................................................................................................................... 77 

7.1.4.1 General .................................................................................................................. 77 

7.1.4.2 MyBioCatalogue > PanaceaCatalogue .................................................................. 78 

7.1.5 Portal ............................................................................................................................. 78 

7.1.6 Tools .............................................................................................................................. 78 

7.1.6.1 Work Package 4 tools ............................................................................................ 78 

7.1.6.2 Work Package 5 tools ............................................................................................ 79 

7.1.6.3 Work Package 6 tools ............................................................................................ 79 

7.1.6.4 Travelling object improvements ............................................................................ 79 

7.1.7 Other technologies and alternatives. Fallback strategies. .............................................. 79 

7.1.7.1 Surveys .................................................................................................................. 79 

7.1.7.2 Tests ....................................................................................................................... 80 

7.1.7.3 Workplan changes ................................................................................................. 80 

7.2 Workplan table ......................................................................................................................... 80 

7.2.1 Resources ....................................................................................................................... 82 

8 Bibliography .................................................................................................................................. 83 

9 Appendix ....................................................................................................................................... 85 

9.1 Appendix A .............................................................................................................................. 85 

9.1.1 Current state of the art analysis schema ........................................................................ 85 

9.2 Appendix B .............................................................................................................................. 86 

9.2.1 Emboss Groups .............................................................................................................. 86 

9.2.2 Soaplab test .................................................................................................................... 87 

9.2.3 Common Interfaces proposal ......................................................................................... 91 

9.2.4 Semantic Service Description (myGrid way) ................................................................ 96 

9.2.5 Biocatalogue web user interface .................................................................................... 99 

9.2.6 myExperiment ............................................................................................................. 100 



D3.1 Architecture and design of the platform 

 

 

 
iv 

9.2.7 Common interfaces design .......................................................................................... 101 

9.2.7.1 Sentence Splitting ................................................................................................ 101 

9.2.7.2 Crawling .............................................................................................................. 102 

9.2.7.3 Tokenization ........................................................................................................ 103 

9.2.7.4 Named Entity Recognition .................................................................................. 104 

9.2.7.5 Lemmatization ..................................................................................................... 105 

9.2.7.6 PoS tagging .......................................................................................................... 106 

9.2.7.7 Alignment ............................................................................................................ 107 

9.2.7.8 Parsing ................................................................................................................. 108 

9.2.7.9 Term Extraction ................................................................................................... 109 

9.2.7.10 Topic Identification ............................................................................................. 111 

 



D3.1 Architecture and design of the platform 

 

 

 
1 

1 Introduction 
Multilingualism in Europe today represents a challenge for Machine Translation (MT) systems which 

are expected to break language barriers for millions of citizens. These systems require massive 

amounts of clean parallel data for every pair of languages and for every domain they are to be imple-

mented. Moreover, all these Language Resources (LR) have to be updated regularly since languages 

change continuously. 

Supplying all these resources to the MT systems represents a critical point for their implementation 

and it is mostly done by hand nowadays. PANACEA aims to create a LR factory which automates the 

steps to create LR reducing the actual necessary time and cost. 

PANACEA can be seen as a factory for the creation of a variety of LRs. In this factory the raw mate-

rial is captured by corpus creation methods (crawling the web, accessing to archived texts, or local 

documents of the user computer). Then this material is cleaned, and processed in order to create de-

rivatives: annotated corpus, parallel corpus and annotated parallel corpus. These first derivatives are 

later used to produce, by means of induction tools, a second order or synthesized derivatives: rich 

lexica (with morphological, syntactic and lexico-semantic information) and bilingual dictionaries 

(word and multiword based) and transfer grammars. The factory should also make available reposito-

ries to merge new with old resources as well as validation tools for each of the LR‟s derivatives. 

The LR factory will be an interoperability platform of components creating complex workflows which 

can reproduce the step-by-step process of creating LR. Combining different tools makes interoperabil-

ity a critical issue for the platform. To this aim standard technologies and protocols had been surveyed 

and chosen.  

The factory is, in sum, an interoperability space where the functional integration of a variety of com-

ponents can be made for them to work in a chain. Each component (system or tools that perform op-

erations to produce LR‟s as supplied by WP4, WP5 and WP6) will be integrated into the platform. By 

integrated we mean that each component has to be wrapped as an independent web service that will 

later be chained into particular workflows that have as objective the production of the different re-

sources. All components will be deployed as web services using common interfaces as way to ensure 

interoperability. Specific aspects that must be covered are: 

 In order to guarantee interoperability, input sent to a web service must comply with the speci-

fications declared in the description of the web service itself. These descriptions are declared 

as metadata in xml format that inform possible users about the characteristics both of the input 

and of the output of every particular web service. In order to maximize interchangeability of 

components that perform the same function, PANACEA will propose the declaration and use 

of common interfaces. Thus every component delivered by WP4 to WP6 will be deployed as a 

web service that will wrap it under a defined common interface.  

 A number of components (and middleware) will be involved in an interoperable space, i.e. a 

platform, in addition to those already mentioned above. The links between components are 

shown in Figure 1. 

 The workflow engine, working as a centralized server that handles the processing chain; 

 The user interface(s) and workflow editor, used to configure, run the processing chains and 

access the results; 



D3.1 Architecture and design of the platform 

 

 

 
2 

 The web services registry or “tools registry”, which store the available services for being 

searched and located; 

 Figure 1 

 

Thus the factory will be provided with a dedicated workflow editor (inspired in myexperiment.org) 

and a registry (where information about all possible components will be stored) that will assist in the 

creation of flexible workflows defined by templates that can be edited and partially replicated and thus 

that can manage the following possible scenarios: 

 The same job but with a new data set, when no specific modification because of the data (lan-

guage, for instance) has to be done.  

 A variant of a type of job. When one variable can determine the selection of one of the mod-

ules (language and pos tagger, for instance). 

 Specifying only critical parts of the job. When the user don‟t need to specify jobs that are 

common and can be predefined as templates. 

 Composition of jobs. Where the output of a job can be the input of another job. 

 New types of analysis. Free selection of components that can be new and even including hu-

man intervention.  

This web service-based scenario where inputs and outputs must be interoperable is crucially dependent 

on the use of standards for defining allowed input/output formats. Is what is called in this report 

“Travelling Object”. 

PANACEA platform needs to be designed and build upon different information technologies (IT) that 

are analyzed in this document taking into account the interoperability problem, cost, functionality, 



D3.1 Architecture and design of the platform 

 

 

 
3 

sustainability etc. Some technologies are chosen as the primary option to develop the platform while 

others will be watched closely and used if it‟s worth. 

2 Terminology 

2.1 Definitions 
AAI [Stanica 2006] 

Authentication and Authorization infrastructure 

An infrastructure that provides Authentication and Authorization Services. The minimum service components 

include Identity and Privilege Management with respect to users and resources. 

Factory 

The set of the platform and the NLP tools used to produce LR.   

Metadata [Guenther 2004] 

Structured information that describes, explains, locates, and otherwise makes it easier to retrieve and use an 

information resource. 

Metadata registry [Guenther 2004] 

A formal system for the documentation of the element sets, descriptions, semantics, and syntax of one or more 

metadata schemes. 

Platform 

The set of tools (registry, workflow editor, etc.), software, documentation (closed vocabularies, format defini-

tions, etc.), which combined define the PANACEA interoperability space. The NLP tools used as web services 

are not considered to be part of the platform.  

Provenance data 

Information that provides a traceable record of the origin and source of a resource  

Registry 

Repository focused on the needs of SOA (defined below) environments typically used to publish, search and 

retrieve a wide variety of technical documents and information as WSDL location, documentation, schemas, 

service descriptions, business process design models, policy documents and so on. 

Resource [Berners-Lee 2005] 

The term "resource" is used in a general sense for whatever might be identified by a URI. Familiar examples 

include an electronic document, an image, a source of information with a consistent purpose (e.g., "today's 

weather report for Los Angeles"), a service (e.g., an HTTP-to-SMS gateway), and a collection of other resources. 

A resource is not necessarily accessible via the Internet; e.g., human beings, corporations, and bound books in a 

library can also be resources. Likewise, abstract concepts can be resources, such as the operators and operands of 

a mathematical equation, the types of a relationship (e.g., "parent" or "employee"), or numeric values (e.g., zero, 

one, and infinity). 

Repository [CiTER] 



D3.1 Architecture and design of the platform 

 

 

 
4 

Facility that provides reliable access to managed digital resources. 

SOA [Mackenzie 2006] 

Service Oriented architecture 

A paradigm for organizing and utilizing distributed capabilities that may be under the control of different owner-

ship domains. It provides a uniform means to offer, discover, interact with and use capabilities to produce de-

sired effects consistent with measurable preconditions and expectations. 

SP [Stanica 2006] 

Service provider 

An entity that provides access to a service. 

Web service [Brown 2004] 

A web service is a software system designed to support interoperable machine-to-machine interaction over a 

network. It has an interface described in a machine-processable format. 

Workflow [Wulong 2001] 

Workflow is a term used to describe the tasks, procedural steps, organizations or people involved, required input 

and output information, and tools needed for each step in a business process. 

2.2  Acronyms 
 

Reference  Abbreviation of    Link 

[CERN]  Conseil Européen pour la Recherche 

Nucléaire    www.cern.ch 

[CLARIN] Common Language and Technology 

  Infrastructure    http://www.clarin.eu  

[CLI]  Command Line Interface 

[DAS]  Distributed annotation system  http://www.biodas.org/documents/spec-1.53.html  

[ebXML]  e-business XML     http://www.ebxml.org/  

[EGEE]   Enabling Grids for E-sciencE   http://www.eu-egee.org/ 

[EGI]  European Grid Initiative   http://web.eu-egi.eu/ 

[GATE]  The General Architecture for Text 

Engineering    http://gate.ac.uk 

[GGF]  Global Grid Forum   http://www.gridforum.org/ 

[GSI]  Grid Security Infrastructure 

[ISOcat]        http://www.isocat.org  

http://www.clarin.eu/
http://www.biodas.org/documents/spec-1.53.html
http://www.ebxml.org/
http://www.eu-egee.org/
http://web.eu-egi.eu/
http://gate.ac.uk/
http://www.gridforum.org/
http://www.isocat.org/


D3.1 Architecture and design of the platform 

 

 

 
5 

[LAF]  Linguistic Annotation Framework 

[LHC]  Large Hadron Collider 

[LMF]   Lexical Markup Framework   http://www.lexicalmarkupframework.org  

[MAF]  Morphosyntactic Annotation Framework 

[OASIS]  Organization for the Advancement  

of Structured Information 

Standards    http://www.oasis-open.org/  

[OGSA]  Open Grid Services Architecture  http://www.globus.org/ogsa/ 

[OWL]  Semantic Markup for Web Services http://www.w3.org/Submission/OWL-S/ 

[REST]  Representational State Transfer  

http://www.ics.uci.edu/~fielding/pubs/dissertation/

rest_arch_style.htm  

[SAWSDL] Semantic Annotations for WSDL and 

XML Schema    http://www.w3.org/TR/sawsdl/ 

[SCHEMAS]       http://www.schemas-forum.org/  

[SHIBBOLETH] Shibboleth    http://shibboleth.internet2.edu/  

[SOAP]  Simple Object Access Protocol 

[UDDI]   Universal Description,  

Discovery and Integration   http://www.oasis-open.org/ 

[UIMA]  Unstructured Information Management 

Architecture    http://incubator.apache.org/uima 

[WLCG] Worldwide LHC Computing Grid Project 

[WSDL]  Web Service Description Language www.w3.org/TR/wsdl 

[WSRL]  Web Services Resource Framework http://www.globus.org/wsrf 

[XML]  Extensible Markup Language 

3 Goals 
This document aims to establish the requirements and the technological basis and design of the 

PANACEA platform. These are the main goals of the document: 

- Survey the different technological approaches that can be used in PANACEA. 

- Specify some guidelines for the metadata. 

- Establish the requirements for the platform. 

http://www.lexicalmarkupframework.org/
http://www.oasis-open.org/
http://www.globus.org/ogsa/
http://www.w3.org/Submission/OWL-S/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.w3.org/TR/sawsdl/
http://www.schemas-forum.org/
http://shibboleth.internet2.edu/
http://www.oasis-open.org/
http://incubator.apache.org/uima
../../../../Configuración%20local/Temp/www.w3.org/TR/wsdl
http://www.globus.org/wsrf


D3.1 Architecture and design of the platform 

 

 

 
6 

- Make a Common Interface proposal for the tools. 

- Propose a format for the data to be exchanged by the tools (Travelling Object). 

- Choose the technologies that will be used to develop the platform. 

- Propose a workplan. 

4 Current state of the art. Analysis of existing tendencies, approaches 

and tools 
The following section is devoted to survey the current state of the art in technologies and tools that can 

be relevant for the development of the PANACEA platform. The section is divided as follows: 

 Frameworks: A software framework, in computer programming, is an abstraction in which common 

code or tools providing generic functionality can be selectively specialized by user code providing spe-

cific functionality. The overall program's flow of control is not dictated by the user. 

 Web Services: Web services are typically application programming interfaces (API) or web APIs that 

are accessed via Hypertext Transfer Protocol and executed on a remote system hosting the requested 

services. PANACEA platform needs web services to remotely access the NLP tools. 

 Workflow editors / engines: A workflow editor is a tool used to design workflows. A workflow en-

gine is a program which is able to execute workflows. Usually a workflow editor is an engine too. 

 Grid infrastructures: A Grid is a new distributed computing infrastructure that interconnects hetero-

geneous resources using wide area networks like the internet. These are complete solutions with storage 

systems, web services, workflows, a registry, etc. The whole PANACEA platform could be designed 

using a Grid. 

 The Registry: A registry is a repository to list web services. PANACEA platform needs a repository 

to list the web services that can be used. 

 Wrappers: A wrapper is a set of tools which let a user with a few or none programming skills easily 

deploy some tools as a web service. A wrapper could be useful for PANACEA service providers. 

 Sharing Research objects: This section is about existing portals to facilitate sharing workflows and 

other relevant documents between users. PANACEA users could share information and files using a 

portal. 

 Relevant projects: This section is devoted to talk about projects which used some technologies or 

developed some formats that could be helpful for PANACEA. 

 Travelling object. Corpus and data format: This section aims to describe existing data formats 

that could be used in PANACEA. 

4.1  Frameworks 

4.1.1 UIMA 

The Unstructured Information Management Architecture or UIMA is an open, scalable and extensible 

platform for the development, integration and deployment of applications that aim at analyzing large 



D3.1 Architecture and design of the platform 

 

 

 
7 

volumes of unstructured information contained in text, video and audio
1
. Although UIMA begun as an 

IBM project, an open source reference implementation of the UIMA specification is currently avail-

able as an open source project
2
 under the Apache Software Foundation family of projects. Apache 

UIMA is offered under an Apache License, thus allowing its use for both proprietary and open/free 

applications. 

UIMA applications usually integrate in a chain one or more components for specific tasks like, for 

example, "sentence and token boundary detection" => "POS tagging" => "lemmatization" => "named 

entity detection". The components implement interfaces defined by the framework and are described 

in XML descriptor files, while the UIMA framework manages the flow of (annotated) data between 

the components. The frameworks are available for both Java and C++, with the Java Framework sup-

porting running both Java and non-Java components (using the C++ framework). Another framework, 

the UIMA Asynchronous Scaleout Framework provides scale out capabilities to the Java framework 

via JMS (Java Messaging Services). 

A UIMA component that analyzes artifacts (e.g. documents) and generates annotations is called an 

Analysis Engine (AE).  Analysis results from an AE produce are represented by typed Feature Struc-

tures which refer to a span of the text under analysis. For example, an annotation over the span of text 

"Haiti" can have the type Location. A Dependency annotation for the same span can be accompanied 

by the value Subject for the attribute Label, and by an integer value for the attribute Head. 

An XML file called a Type System Descriptor defines the Feature Structure types that can be gener-

ated by an AE. UIMA utilities will automatically generate Java classes corresponding to the types that 

are defined in the Type System Descriptor. In the example feature structure above, one would use the 

getHead() method of the Dependency class to get the integer representing the token‟s head. The anno-

tations are stored in the Common Analysis Structure (CAS) which is used for communication of anno-

tations between UIMA AEs and/or applications. Special AEs called CAS Consumers can be used to 

serialize CAS‟s to different formats. 

Although the Apache-UIMA site provides information on making analysis results available as REST 

web services, the main documentation efforts focus on deployment solutions using the UIMA Asyn-

chronous Scaleout Client - Service Architecture, in which a custom UIMA client application accesses 

one or more instances of a component or a processing pipeline service. 

A relatively small number of tools have been ported to UIMA by the project‟s community. These in-

clude a Tokenizer tool, a HMM POS tagger and a Lucene CAS Indexer. Other organizations like the 

BioNLP UIMA Component Repository
3
 and the JULIE Lab

4
 offer open source and extensible NLP 

tools and Type Systems for several annotation tasks. U-Compare is a closed-source system that allows 

on-line creation of workflows based on existing UIMA components (see 4.1.1.1 for a description of U-

Compare). 

                                                      

1
 In this document, we focus on UIMA applications for analysis of text. 

2
 http://incubator.apache.org/uima 

3
 http://bionlp-uima.sourceforge.net/  

4
 http://www.julielab.de/Resources/Software/NLP_Tools.html  

http://incubator.apache.org/uima
http://bionlp-uima.sourceforge.net/
http://www.julielab.de/Resources/Software/NLP_Tools.html


D3.1 Architecture and design of the platform 

 

 

 
8 

UIMA has been approved by OASIS, the international open standards consortium, as an OASIS Stan-

dard. The Apache UIMA implementation has reached its 2.3 version and has recently (18 March 2010) 

graduated from an incubation phase to become a top level Apache project. Documentation is provided 

in the form of a set of well-written technical documents, while support and advice by the main con-

tributors and the community in the related mailing lists is generally quick and informative. 

Depending on the point of view, weaknesses may include  

 large, often daunting, learning curve and time investment needed to get accustomed to the 

framework 

 bias towards the Java framework in community discussions and documentation 

 prior knowledge of Eclipse and Java a must 

 GUIs for editing XML descriptors for components available only for Eclipse; no support for 

other IDEs  

 not that many tools already ported as Analysis Engines 

 lack of a framework like GATE‟s JAPE for developing rule-based analysis engines 

4.1.1.1 U-compare 

U-Compare
5
 (Kano et al., 2009a) is a system based on UIMA but aims to provide a platform that is 

easier to use and allows users to make visualizations and comparison between the tools. It uses the 

UIMA tools for text mining and natural language processing. U-Compare contains its own graphical 

user interface and workflow editor which can be used to create workflows to be used with UIMA and 

shared with other users. Several components can be run in parallel and their respective results can be 

compared with each other and evaluated. 

U-Compare is a joint project between the University of Tokyo, the Center for Computational Pharma-

cology (CCP) at the University of Colorado Health Science Center, and the National Centre for Text 

Mining (NaCTeM) at the University of Manchester. The platform itself, i.e. the U-Compare type sys-

tem, is released under the Apache license and is free for research purposes, but cannot be re-

distributed or re-used if any changes have been done to its code. The comparison generator, the GUI 

and the other shared parts can be used freely for research, too, but these components must not be re-

distributed or re-used. 

U-Compare provides a number of corpus readers (Biological Entity Annotated Corpora, Biological 

Event Annotated Corpora, BIO, XMI, and plain text) and writers (XMI, Inline XML, Annotation 

Printer, BIO), syntactic tools (sentence splitters, tokenizers, POS taggers, lemmatizers, CFG parsers, 

dependency parsers, and deep parsers), semantic tools (named entity recognizers, biological event 

recognizers, an abbreviation detector). These are UIMA tools that have been integrated into U-

Compare. Additionally, the U-Compare Annotation Viewer to visualise annotation instances, MoriV 

to visualise HPSG feature structures and CFG tree structures, and Annotation Comparator are inte-

grated into the system. 

Additional UIMA compatible components can be used with U-Compare with little effort. Other com-

ponents can be wrapped as well by making them compatible with the U-Compare type system (Kano 

                                                      

5 http://u-compare.org 



D3.1 Architecture and design of the platform 

 

 

 
9 

et al., 2009b). In order to create compatible interfaces, a new UIMA Aggregate Analysis Engine com-

ponent needs to be created that comprises three components: a type systems converter to convert the 

U-Compare output to the input format required by the tool, the original component, and another con-

verter that converts the new component's output into the U-Compare type system. It can then be de-

ployed as a UIMA Soap web service, thus providing a UIMA Soap service description file which can 

be used to create a component comprising the web service only. This will then compatible to the U-

Compare type system. This is the only possible way to make non-Java components U-Compare type 

system compatible, while Java components can also be deployed as .jar files. 

Version 1.1.4 has been released in March 2010. Guides for both using and developing the system are 

available on the project homepage. The first version was published in 2008; active development was 

done in 2009 for the participation in BioNLP 2009. 

Potential weaknesses: 

 closed source system 

 not under active development 

 Development documentation is not complete 

4.1.2 GATE 

The General Architecture for Text Engineering or GATE
6
 is an open source, extensible Java platform 

for the development and integration of NLP applications. The GATE project started in 1995 and is 

being maintained by a core team of developers associated with the NLP Research Group of the Uni-

versity of Sheffield. The core GATE software is licensed under the Gnu Library General Public Li-

cense (LGPL), which basically allows the use of a library for the development of both open/free and/or 

proprietary applications, as long as the source of the library is distributed along with these applica-

tions. 

The main concepts in GATE terminology are LRs, Processing Resources, Data Stores, and Applica-

tions. LRs are data-only resources like corpora, lexicons, thesauri or ontologies. PRs are software re-

sources which often include LRs and whose typical purpose is to process documents and create anno-

tations. A DS is where (annotated) corpora are stored for efficient reuse and reprocessing. An Applica-

tion is a saved state of a configuration including PR and LRs.  

The core GATE software includes  

 the GATE Developer, which is an IDE for aggregating PRs, running applications on document 

collections. The Developer also offers facilities for benchmarking and evaluation of results 

produced by PRs, vs. gold annotations that can be created manually with the IDE 

 the GATE Embedded library, which allows any Java application to process documents  using 

GATE Applications  

The GATE platform is distributed with a large set of NLP components for several languages, while, 

for English, a ready-to-be-used information extraction system called ANNIE is also included. Several 

rule-based GATE components take advantage of Java Annotation Pattern Engine or JAPE, which al-

lows development of finite-state transducers over annotations based on regular expressions. 

                                                      

6
 http://gate.ac.uk  

http://gate.ac.uk/


D3.1 Architecture and design of the platform 

 

 

 
10 

As of today, GATE is at its 5.1 release. The core documentation is the User Guide, a book providing 

information for different GATE users (component developers, grammar writers, annotators) on all 

aspects of the framework. A set of tutorials and screen casts is also available Support and advice by 

the main contributors in the related mailing lists is quick and informative. 

Depending on the point of view, weaknesses may include: 

 no automatic code generation for accessing Annotation attribute values 

 no GUI for editing descriptor files for components and aggregated applications 

 not enough documentation on robust, error-tolerant deployment of components as web ser-

vices 

4.1.3 Concluding remarks. Comparative analysis and recommendations. 

The following table shows the main differences between the UIMA and GATE frameworks. 

Table 1: UIMA / GATE comparison 

 UIMA GATE 

Functionalities Annotation type system; automatic 

class generation for all annotation 

types; GUI tools for creating and 

editing descriptors for configura-

tion, integration and deployment 

of components; robust, error-

tolerant, distributed deployment of 

components;  

Typeless annotation schema; GUI for 

manual annotation of documents and 

evaluation of automatic annotation; large 

set of NLP components already available 

Integration Java/OS independent, C++ version 

of the framework available 

Java/OS independent 

Maturity Mature, actively maintained Mature, actively maintained 

Support and 

plans for the fu-

ture 

Active developer and user com-

munity; bugs and issues can be 

reported in the project‟s tracker;  

Active developer and user community; 

bugs and issues can be reported in the pro-

ject‟s tracker; training seminars regularly 

organized. 

Evolving technologies include GATE 

Teamware, a web-based management plat-

form for collaborative annotation; and 

GATE Cloud,  a parallel distributed proc-

essing engine that combines GATE em-

bedded with a heavily optimized service 

infrastructure running on supercomputer 

hardware 

Availability Open-source Open-source 

 



D3.1 Architecture and design of the platform 

 

 

 
11 

These two solutions are both valid options that could be used as fallback positions for the PANACEA 

project. Considering that some partners have experience with UIMA that would be the chosen solu-

tion. 

4.2 Web Services 
Web services (sometimes called application services) are services (usually including some combina-

tion of programming and data, but possibly including human resources as well) that are made available 

from a Web Server for Web users or other Web-connected programs. 

Regarding the PANACEA project, web services have to be the basic processing element inside the 

factory. Web services technology will allow the remote execution of tools in the PANACEA platform. 

Web services can be invoked alone or combined in workflows. 

This section is devoted to study some existing web service technologies, formats and protocols: 

 Web Service Description Language [WSDL]: it‟s an XML format used to describe a web ser-

vice that can be understood by computers. 

 Simple Object Access Protocol [SOAP]: SOAP is a protocol used to access web services. 

 REST: is a development style for distributes media based on HTTP. RESTful web services are 

developed following the REST style. 

 AXIS: a web service framework for SOAP. 

 Common interfaces and tool integration. 

 Metadata / Ontology / Closed Vocabularies. 

4.2.1 WSDL 

Web Services Description Language [WSDL] is an XML format that is used to describe web service 

interfaces. It describes the functions and data formats (messages) in an abstract manner. This results in 

a set of reusable bindings which are subsequently bound to concrete network protocols and message 

formats. SOAP (Simple Object Access Protocol) and XML schema are usually used to define web 

services over the web.  

Every function of the web service is described using XML in the WSDL file. Each function descrip-

tion contains the types of its arguments and return values formalized with XML Schemas. These types 

can be simple or complex. The end-point (the physical address of the web server hosting the service) 

and the URI of the service which is a unique identifier with which the service is associated (the HTTP 

request is formed by issuing a POST or GET HTTP operation to the end-point asking for a function 

along with the URI) are included in the service description inside the WSDL. 

In the following example (taken from the WSDL 2.0 primer of W3C, 

http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/#basic-example) 

<types> 

    <xs:schema  

        xmlns:xs="http://www.w3.org/2001/XMLSchema" 

        targetNamespace="http://greath.example.com/2004/schemas/resSvc" 

http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/#basic-example


D3.1 Architecture and design of the platform 

 

 

 
12 

        xmlns="http://greath.example.com/2004/schemas/resSvc"> 

      <xs:element name="checkAvailability" type="tCheckAvailability"/>     

      <xs:complexType name="tCheckAvailability">      

        <xs:sequence>       

          <xs:element  name="checkInDate" type="xs:date"/>       

          <xs:element  name="checkOutDate" type="xs:date"/>       

          <xs:element  name="roomType" type="xs:string"/>       

        </xs:sequence>      

      </xs:complexType>    

      <xs:element name="checkAvailabilityResponse" type="xs:double"/>     

      <xs:element name="invalidDataError" type="xs:string"/>     

    </xs:schema>     

  </types> 

  <interface name="reservationInterface"> 

    <fault name="invalidDataFault" 

            element="ghns:invalidDataError"/>  

    <operation name="opCheckAvailability"  

            pattern="http://www.w3.org/ns/wsdl/in-out"  

            style="http://www.w3.org/ns/wsdl/style/iri" 

            wsdlx:safe="true"> 

        <input messageLabel="In"  

              element="ghns:checkAvailability" /> 

        <output messageLabel="Out"  

              element="ghns:checkAvailabilityResponse" /> 

        <outfault ref="tns:invalidDataFault" messageLabel="Out"/> 

    </operation> 

  </interface> 

the function opCheckAvailability has as parameters the XML Schema complex type tCheckAvailabil-

ity that is composed of two dates and one string and that it returns one double real number. 

WSDL does not specify a semantic of the operation(s) it describes. The user of a web service must 

know the significance of the result one function returns. For instance, a WSDL file describes two func-

tions f1 and f2, both of which require two float numbers as arguments and are returning float. Now, 



D3.1 Architecture and design of the platform 

 

 

 
13 

let‟s suppose that the first one is taking the sum of its arguments and the second one divides its argu-

ments. If the user does not recognize the type of operation either by reading the function name or by 

reading the documentation the creator of the function has been kind to offer, he will never know what 

makes the f1 and f2 different. 

One other underspecified element of WSDL is that the particular format of a return value is not 

known. In other words, the user of a web service must know in advance what form the input parame-

ters must have (for instance if a function is expecting a string, that string has a specific format like the 

format of a date for instance and will not work with a different format) and what format the output of 

the function adopts. 

4.2.2 SOAP 

SOAP (Simple Object Access Protocol) is a XML-based communication protocol for accessing a web 

service, created to communicate over HTTP (which is today supported by all internet browsers and 

services). SOAP is platform and language independent, simple and extensible. SOAP may also be 

used over HTTPS (which is the same protocol as HTTP at the application level, but uses an encrypted 

transport protocol underneath) with either simple or mutual authentication.  

A SOAP message is an XML document containing: 

 an Envelope element that identifies the XML document as a SOAP message and constitutes 

the root element; it contains the namespace attribute (which defines the envelope as a SOAP 

envelope) and the encodingStyle attribute (defining the data types used in the document); 

 an optional Header element, containing application-specific information (like authentication, 

payment, etc) about the SOAP message; 

 a Body element, that contains the actual SOAP message (call and response information); 

 an optional Fault element containing errors and status information; it must be a child of the 

Body element and it can appear only once in a SOAP message. 

Although using SOAP over HTTP allows for easier communication through proxies and firewalls than 

previous remote execution technology, the technique has the disadvantage of using an application 

level protocol (HTTP) as a transport protocol (critics have argued that abusing a protocol by using it in 

a different purpose may conduct in sub-optimal behaviour). 

The following table shows a short summary of the advantages and disadvantages of SOAP protocol. 

Table 2: Pros and Cons of SOAP 

Pros and Cons SOAP 

Pros Cons 

Language, platform, and transport independent Conceptually more difficult, more "heavy-

weight" than REST 

Designed to handle distributed computing environments More verbose 

Is the prevailing standard for web services, and hence has better 

support from other standards (WSDL, WS-*) and tooling from 

vendors 

Harder to develop, requires tools 



D3.1 Architecture and design of the platform 

 

 

 
14 

Built-in error handling (faults)  

Extensibility  

 

WSDL SOAP binding 

As seen in [Butek 2005]
7
 the binding style (affects the way in which the body of a SOAP message is 

constructed) can be “RPC or Document”. A SOAP binding can also have an encoded use or a literal 

use. Table 3 aims to summarize the different possibilities. 

Table 3: SOAP WSDL binding style/use 

Binding Style 

Affects the way in which the 

body of a SOAP message is 

constructed. 

RPC: Remote procedure call. Needs to comply with conventions. 

Document: No need to follow conventions. Soap message is sent as one document 

inside soap body element. 

Use 

Specifies the encoding rules of 

the soap message. 

Literal: rules to encode soap body with xml schema. 

Encoded: rules in a URL (defined in encodingStyle attribute). 

[Butek 2005] presents five different options for the WSDL SOAP binding and it concludes that while 

each style has its place, under most situations the best style is document/literal wrapped. These are 

the basic characteristics of the document/literal wrapped pattern: 

- The input message has a single part. 

- The part is an element. 

- The element has the same name as the operation. 

- The element's complex type has no attributes. 

Here are the strengths and weaknesses of this approach: 

Strengths: 

- There is no type encoding info. 

- Everything that appears in the soap:body is defined by the schema, so you can easily validate this 

message. 

- Once again, you have the method name in the SOAP message. 

- Document/literal is WS-I compliant, and the wrapped pattern meets the WS-I restriction that the 

SOAP message's soap:body has only one child. 

Weaknesses: 

                                                      

7
 http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/ 

http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/


D3.1 Architecture and design of the platform 

 

 

 
15 

- The WSDL is even more complicated. 

An example is presented in Table 4. 

Table 4: SOAP WSDL document/literal wrapped example 

Java method 

public void myMethod(int x, float y); 

Document/literal wrapped WSDL for myMethod 

<types> 

 <schema> 

  <element name="myMethod"> 

   <complexType> 

    <sequence> 

     <element name="x" type="xsd:int"/> 

     <element name="y" type="xsd:float"/> 

    </sequence> 

   </complexType> 

  </element> 

  <element name="myMethodResponse"> 

   <complexType/> 

  </element> 

 </schema> 

</types> 

<message name="myMethodRequest"> 

  <part name="parameters" element="myMethod"/> 

</message> 

<message name="empty"> 

  <part name="parameters" element="myMethodResponse"/> 

</message> 

<portType name="PT"> 

  <operation name="myMethod"> 

   <input message="myMethodRequest"/> 

   <output message="empty"/> 

  </operation> 



D3.1 Architecture and design of the platform 

 

 

 
16 

</portType> 

<binding .../> 

<!-- I won't bother with the details, just assume it's document/literal. --> 

Document/literal wrapped SOAP message for myMethod 

<soap:envelope> 

    <soap:body> 

        <myMethod> 

            <x>5</x> 

            <y>5.0</y> 

        </myMethod> 

    </soap:body> 

</soap:envelope> 

 

4.2.3 REST 

REST is an architectural style for distributed hypermedia systems such as the World Wide Web. The 

term was introduced in 2000 in the doctoral dissertation of Roy Fielding [Fielding 2000], who also 

participated in the IETF [ Internet Engineering Task Force] working groups on URI, HTTP and 

HTML. The systems which follow REST principles are called RESTful. 

Shortly, the basic REST principles are: 

 Application state and functionality are abstracted into resources; all types of documents can be 

used as representations for resources (XML, XHTML, HTML, PNG, ...) 

 Every resource is uniquely addressable using a universal syntax for use in hypermedia links 

(URI –Uniform Resource Identifier) 

 All resources share a uniform interface for the transfer of state between client and resource, 

consisting of a constrained set of well-defined operations (represented by the GET, POST, 

PUT and DELETE methods) and a constrained set of content types (optionally supporting 

code on demand); 

 The transfer protocol is client-server, stateless, cacheable and layered. 

A RESTful web service is a simple web service implemented using HTTP and the principles of REST. 

Some advantages and disadvantages of REST are listed in the following table. 

Table 5: Pros and Cons of REST 

Pros and Cons of REST 

Pros Cons 



D3.1 Architecture and design of the platform 

 

 

 
17 

Language and platform independent 

 

Assumes a point-to-point communication model--

not usable for distributed computing environment 

where messages may go through one or more in-

termediaries 

Much simpler to develop than SOAP 

 

Lack of standards support for security, policy, 

reliable messaging, etc., so services that have more 

sophisticated requirements are harder to develop 

("roll your own") 

Small learning curve, less reliance on tools  Tied to the HTTP transport model 

Concise, no need for additional messaging layer  

Closer in design and philosophy to the Web   

4.2.4 AXIS 

Axis
8
 is an open source web service framework developed and maintained by the Apache Software 

Foundation
9
. Developers can use Java or C++ to encode applications and deploy them as web services. 

Axis is based on XML and SOAP protocol. 

Latest release is Axis2
10

 from 23th October 2009 which supports SOAP 1.1 and SOAP 1.2, but it also 

has integrated support for REST style of Web services. It is carefully designed to support the easy 

addition of plug-in "modules" that extend their functionality for features such as security and reliabil-

ity. Axis2 not only provides the capability to add Web services interfaces to Web applications, but can 

also function as a standalone server application. 

Features: 

 Hot Deployment: Axis2 can deploy Web services without having to shut down the server. 

 Flexibility: The Axis2 architecture gives the developer complete freedom to insert extensions 

into the engine for custom header processing. 

 WSDL support: Axis2 supports the Web Service Description Language, version 1.1 and 2.0, 

which allows you to easily build stubs to access remote services, and also to automatically ex-

port machine-readable descriptions of your deployed services from Axis2. 

4.2.5 Common interfaces and tool integration 

The main goal when deploying NLP tools (like Freeling or a tagger) as Web services was to create a 

scenario where services are easy to invoke and interoperable between one another if necessary. The 

user can operate those services at will and interconnect them to create complex execution chains. In 

computer science, interoperability is achieved by separating interfaces from implementations. Those 

interfaces can be defined specifically for each tool. In the end, the desired scenario is one in which 

several tools with the same functionality can be easily exchanged.  

                                                      

8
 http://ws.apache.org/axis/ 

9
 http://www.apache.org/ 

10
 http://ws.apache.org/axis2/index.html 

http://ws.apache.org/axis/
http://www.apache.org/
http://ws.apache.org/axis2/index.html


D3.1 Architecture and design of the platform 

 

 

 
18 

These requirements led us to explore the possibility to define common interfaces. If similar tools (with 

the same functionality) can be described with a common interface then it‟s easy to change them and to 

learn how to call them. 

In WSDL, the operations are the basic unit with a specific functionality that can be invoked. Each 

operation can only have one input message and one output message. These messages define the infor-

mation the service receives and returns when the operation is invoked. In the end, every operation will 

be implemented by a software method that needs all its necessary parameters to work. Those parame-

ters must be represented in the message. The quickest solution, often, is to map all implementation 

parameters into the corresponding message parts. 

Part messages can be defined case by case or use type definition via XML schemas (enabling type 

sharing and reusing). Example tools like FreeLing and TreeTagger show that the attempt to define a 

common set of typed input parameters is not feasible when dealing with implementation parameters. 

Rather, it is suggested an approach where complexity derived from concrete implementations has no 

significant consequences on interfaces. This can be achieved by avoiding the proliferation of imple-

mentation particular parameters in WSDL messages. 

4.2.6 Metadata / Ontology / Closed vocabularies 

This section is devoted to semantic annotations of services as a way of easing service interoperability. 

These annotations are eventually used for classifying, discovering, matching, composing and invoking 

Web services. 

There are different approaches to semantic annotation of services (OWL-S
11

, SAWSDL
12

, etc.). They 

all agree on using some sort of semantic model that is used to annotate their services descriptions. 

OWL-S is an ontology that covers everything from service description to service grounding (linking 

between the semantic model and the WSDL). OWL-S relates ontological concepts to real implementa-

tions. 

SAWSDL is a W3C standard for semantic annotation of WSDL. SAWSDL provides standard means 

to relate WSDL documents to semantic descriptions. 

There can be found some lightweight approaches that should be noticed. The myGrid semantic model 

(Wolstencroft et al., 2007) from the bioinformatics field presents an ontology divided in Grid Service 

Ontology (used to describe technical issues like WS, etc.) and Grid Domain Ontology (used to de-

scribe the bioinformatics field). This approach avoids much of the complexity of OWL-S based de-

scriptions because invocation details are not included. 

Using myGrid ontology input and output parameters can be defined in terms of their semantic types 

and the format. The format describes how data is represented and the semantic type describes the do-

main specific information. The operations are defined regarding the task they perform and the re-

sources they use. 

All these metadata are published in a registry (Feta or Biocatalogue for myGrid environment) which 

allow the user to make queries (Lord, et al, 2005). 

                                                      

11 OWL-S, Semantic Markup for Web Services. http://www.w3.org/Submission/OWL-S/. 

12 SAWSDL, Semantic Annotations for WSDL and XML Schema. http://www.w3.org/TR/sawsdl/. 



D3.1 Architecture and design of the platform 

 

 

 
19 

4.2.7 Concluding remarks. Comparative analysis and recommendations. 

The PANACEA platform function is to integrate different functionalities deployed as web services. 

These web services could be developed using SOAP or REST. The small learning curve and the sim-

plicity of REST technology are good advantages of this technology. However, the lack of standards 

and tool support makes it a possible solution for the future but not an adequate for first versions of 

PANACEA platform. The best option for PANACEA is to start developing using the SOAP protocol 

but keeping an eye on how the REST technology evolves. First versions of the platform could be 

based on SOAP only web services. Later versions could use some REST web services too. 

The SOAP protocol uses WSDL to describe its web services interfaces. WSDL is the first point to start 

working with interoperability. Using the document literal wrapped flavour of WSDL will help 

PANACEA developers to create and use common interfaces and to reuse already made types. 

To populate all these parameters, operations, etc. metadata and closed vocabularies could be crucial. 

After all, the web services are not developed for an in-house use, they are supposed to be discovered 

and used by users outside. Using an ontology will help users to find, use and combine web services. 

The OWL-S ontology seems to be a very complex solution. However, myGrid ontology presents an 

interesting division between service ontology (no need of further development) and domain ontology. 

The first one could be reused and PANACEA would only need the development of the domain ontol-

ogy. 

Table 6: Web Services and Ontologies comparative analysis 

Web 

Services 

Cost / 

learning 

curve 

Functional-

ities 

Integrability maturity Support and 

plans for the 

future 

Availability  

SOAP       

REST       

Ontolo-

gies 

Cost / 

learning 

curve 

Functional-

ities 

Integrability maturity Support and 

plans for the 

future 

Availability  

OWL-S       

MyGrid 

ontology 
      

 

4.3  Workflow systems 
The PANACEA platform will allow combining different components to create complex workflows. 

Users will need a user-friendly managing tool for the composition of their desired workflows. This 

section is devoted to the analysis of three existing workflow editors that could be used for the PANA-

CEA platform. 

The following sections present a survey developed by UPF to test the feasibility of using existing 

workflow editors to work with existing language technology tools as foreseen in PANACEA. 



D3.1 Architecture and design of the platform 

 

 

 
20 

4.3.1 Triana 

Triana
13

 is one of the two test bed applications developed for GridLab, a large EU funded project. The 

aim of GridLab is to develop a simple and robust grid application toolkit (GAT) enabling applications 

to exploit the power of the GRID. 

Table 7: Triana Technical overview 

Paradigm Data flow based 

Language Proprietary language. 

Concurrence It has a good level of concurrency control with merge and block components. 

Parallelism Being a data flow driven software Triana has a very good level of parallelism. 

Loops Triana has a very good level of loop control. It can be done in several ways depending on the user deci-

sion and it accepts dynamic variables to control the exit condition. Any logic operation with variables 

can be used for the exit condition. 

Conditions The conditional components are not as powerful as the loop components and there is only a very basic 

IF clause 

exception 

handling 

Exception handling is good enough. Every component may have an error output (called error node). 

Actions can be programmed in the workflow when an error appears. 

Other Triana does not include a way to insert small algorithms in the workflow (this must be done by a web 

service or a local compiled component). 

 

 

Table 8: Triana Descriptive information 

Developers Developed by Cardiff University 

Domain Astronomy and life sciences. 

Maturity Projects using Triana: GridOneD, GEO 600, BiodiversityWorld, DIPSO, FAEHIM, GEMMS, GEN-

IUS Grid portal, Data-Mining Grid 

The last publication reported on the Triana's web page is 2009. 

future plans -- no information available -- 

                                                      

13
 http://www.gridlab.org/WorkPackages/wp-3/index.html 

http://www.gridlab.org/
http://www.trianacode.org/about/index.html
http://www.cardiff.ac.uk/
http://www.gridlab.org/WorkPackages/wp-3/index.html


D3.1 Architecture and design of the platform 

 

 

 
21 

Community Information taken from NesCForge: 

Public mailing lists:  6 lists with no activity 

Public Forums:   2 public forums with no activity 

First release:  beta version 3.0 date: 2004-08-12 

Last release:   version 3.2.2 date: 2007-04-24 

eHumanities The DataMiningGrid project is a shared cost Strategic Targeted Research Project (STREP) granted 

by the European Commission (grant no. IST-2004-004475). It was part of the Sixth Framework 

Programme of the Information Society Technologies Programme (IST) 

Based on Triana 

170 downloads from sourceforge 

Integration Triana runs on windows and linux. 

documentation Enough documentation when starting. However most of the functionalities and tools are not 

documented.  

 

The GUI 

a) Installation & documentation: 

● Easy installation and well documented.  

● The GUI includes help and tutorial (with some missing images and not completed).  

● Problems when looking for help/support on the web.  

● Not easy to start working with it. 

b) Editing workflows: 

The task of editing workflows is a bit verbose. Triana includes Local workflows (a large library of 

“local tasks”) and Distributed workflows. Distributed components within Triana include grid-oriented 

components (GRAM
14

 & GRMS
15

) and service-oriented components (web services and P2P). Service-

oriented components use a GAP(Grid Application Prototype Interface) Interface which provides job 

submission and file-transfer operations within Triana. 

Once a web service is imported, it appears as a tool in the tool tree alongside the other tools and can be 

connected into a Triana workflow in exactly the same manner as other 'local' tools.  

Triana includes a graphical editor where selected processors (used in TRIANA to denote a component 

perform a unit of work) are dragged into the editor window. Input/output information is displayed in a 

pop-up window when the mouse is over the processor. As soon as processors are added to the editor, 

the system establishes the links between them. 

c) Input / output: 

                                                      

14
Grid Resource Allocation Management del Globus project 

15
Grid(Lab) Resource Management del GridLab project 

http://fp6.cordis.lu/fp6/home.cfm
http://fp6.cordis.lu/fp6/home.cfm
http://www.cordis.lu/ist


D3.1 Architecture and design of the platform 

 

 

 
22 

In Triana input renderers are 'tools' and they are listed in the tool tree for 'Triana Tools' together with 

any other processor. The user needs to choose the relevant input/output tool in order to read/see in-

puts/outputs. As Triana was created to support astronomy and live sciences, most of the input/output 

tools are irrelevant to humanities. In order to deal with complex inputs, the user needs to generate 

static type classes and create custom tools. 

d) Searching: 

Triana includes a searching facility. However we were not able to search in the UDDI repository. 

Table 9 

Analysis of main characteristics 

Functionalities workflow editor. good level of loop control. 

Integration Windows and Linux. Proprietary language. 

Maturity The last publication reported on the Triana's web page is 2009. 

Support and plans 

for the future 

Most of the functionalities and tools are not documented. Not documented 

plans for the future. 

Availability Open-source 

 

4.3.2 Kepler 

Kepler
16

 is a cross-project collaboration led by the Kepler/CORE team (UC Davis, UC Santa Barbara, 

and UC San Diego). The software builds upon the Ptolemy II framework, developed at the University 

of California, Berkeley. Ptolemy II is a software framework designed for modelling, design, and simu-

lation of concurrent, real-time, embedded systems. 

Table 10: Kepler Technical overview 

paradigm Data flow based 

language Proprietary language. Workflows can only be created and executed using Kepler tool.  

Keppler uses the proprietary Modelling Markup Language (MoML). 

concurrence The concurrence control is based on Merge as well that is enough for many workflows but not for some 

more sophisticated.  

parallelism Parallelism is full executed as normal in Kepler.  

loops Kepler has a lot in common with Taverna, it has no loops since it is data flow driven but in Kepler is not 

used the internal iteration system that Taverna has. In this way, any kind of iteration should be de-

scribed using tricky ways. In addition, dynamic variables cannot be used as loop exit conditions. 

                                                      

16
 https://kepler-project.org/ 

http://www.cs.ucdavis.edu/
http://www.nceas.ucsb.edu/ecoinfo
http://scirad.sdsc.edu/datatech/swat.html
http://ptolemy.eecs.berkeley.edu/ptolemyII
https://kepler-project.org/


D3.1 Architecture and design of the platform 

 

 

 
23 

conditions Good conditional components. We find select, switch, comparator, logic function, equal, isPresent and 

some more. 

exception 

handling 

Exception handling is not available in Kepler. Although the user can program raising exceptions in the 

required situations, there is not a way of catching exceptions when a web service is missing, timeouts, 

etc… 

 Kepler allows to encapsulate algorithms easily in components (in Kepler are called actors). This is very 

helpful for connecting components that need small tidy up in the data before get connected. 

Table 11: Kepler Descriptive information 

developers Developed by the members of the Ptolemy project at UC Berkeley. 

domain Molecular biology, ecology, geosciences, chemistry and oceanography. 

maturity First Kepler alpha 6 version released on April 29, 2005  

Last release (Kepler 1.0.0 ) May 2008 

Kepler is nightly updated. 

future plans  

community kepler-users mailing lists with moderate usage. 

kepler-dev mailing list or technical discussions with active usage  

Kepler includes a kepler repository which can be accessed from the web. The tool allows 

searching the repository. The organization of the repository and search capabilities is not 

developed.   

eHumanities Text-mining. 

MultiChek (the Multivalment – Chesire- Kepler VRE project) aims at developing a collabora-

tive engineer environment able to provide new methods of creating, sharing, disseminating 

and reusing scholarly information. 

integration  

documentation Good documentation for both users and developers. Help manuals are good. It includes 

flash demos and examples. 

The GUI 

Easy installation and well documented. The Workstation includes user manual, examples and a „Ke-

pler Actor‟ reference file. 

The graphical tool is good and has nice functionalities; however we faced some refreshing problems. 

(When editing and instantiating Java components, the application had to be shut down and restart in 

order to refresh the whole workflow). 



D3.1 Architecture and design of the platform 

 

 

 
24 

Editing workflows 

In Kepler components are called Actors. The system includes a large standard library of local actors. 

The way 'remote actors' are included in workflows differs from that of Taverna and Triana. In this 

case, the user needs to choose the correct actor 'type' from the local library. Once the relevant actor is 

dragged into the editor window, the user populates it with information concerning the WSDL uri and 

the method name. 

Thus, for example, Kepler includes WebServiceActor and WSWithComplexTypes. These actors in-

voke the Web service and broadcast the response through their output ports. But whereas the first 

deals with web service operation with simple types, the later deals with web services with complex 

types. This means that the user needs to know whether the remote service requires simple or complex 

input types. 

Note that in Triana and Taverna the way to 'load' remote processors from web services is quite differ-

ent: the user enters the WSDL URI and the system populates the local library with the external proces-

sors. Once the remote processors are in the local library, the user „drag&drops‟ them into the editor. In 

Kepler, the user selects the appropriate Actor and, once this is „dropped‟ in the editor area, populates 

the Actor with WSDL information. 

Again, the way GUIs deal with processors requiring complex input types is different. In Triana, the 

user needs to select the appropriate input renderer. In Taverna, the system automatically offers the 

possibility to include the local tool XMLsplitter which deals with complex input types. 

Kepler allows adding local Java Actors (the equivalent Java Beans in Taverna). Java Actors are edited 

and compiled outside Kepler before they can be „imported‟ and used in the workstation. For non-

expert users, this is not an easy scenario. 

In Kepler, every workflow requires a director. The user selects the relevant Director which directs the 

execution of the workflow. The list of directors includes: Synchronous Dataflow (SDF), Process Net-

works (PN), Dynamic Dataflow (DDF), Continuous Time (CT) and Discrete Events (DE). For a non 

expert user, choosing the appropriate Director is a non-trivial task. 

Table 12 

Analysis of main characteristics 

Functionalities workflow editor. Good conditional components. No loops. 

Integration Windows, Mac and Linux. Workflows can only be created and executed using 

Kepler tool. 

Maturity The current version of Kepler is 1.0.0, released on May 12, 2008. 

Support and plans 

for the future 

Good documentation. https://kepler-project.org/ 

Availability Kepler is freely available under the BSD License. 

 

https://kepler-project.org/


D3.1 Architecture and design of the platform 

 

 

 
25 

4.3.3 Taverna (myGrid) 

Taverna17 is a free software workbench for designing and executing workflows, created by 

the myGrid project, and funded through OMII-UK (see later section 4.4.3). 

Table 13: Taverna Technical overview 

paradigm Data flow based 

language Proprietary language, the Simple Conceptual Unified Flow Language or SCUFL.  

(Taverna2 no longer uses Scufl.) 

concurrence The concurrence offered by Taverna is basic and based on merge 2 branches when both are finished. It 

is enough for many workflows but some advanced ones are outside this approach. 

parallelism Parallelism is a primary concept in Taverna since it is Data Flow driven and almost all tasks are per-

formed in parallel when possible.  

loops Taverna has not a while component that allows for iterations but there is the possibility to use list of 

items as input in the operations and set the option “iterate”. It will execute the operation once per item. 

It is allowed as well to set several input lists and the input will be taken one item of each list per proc-

essing iteration or as a Cartesian product per iteration. In most of the cases this system of iterations is 

enough but should have more powerful loop control like while statement. 

exception 

handling 

Taverna has a basic exception handling mechanism included. It supports retry of invocation with con-

figurable timeout and number of retries, and user-defined alternatives for processors failing constantly. 

other All operations in Taverna must be encapsulated as a web services or local services programmed in java. 

There is no possibility of simple data manipulation in the workflow. It is very useful for connection 

between processes. Sometimes it is required to manipulate a little bit an output of a web service for 

being the input of another one, just a simple mathematical operation for instance. 

Table 14: Taverna Descriptive information 

developers Created by the myGrid project, and funded through OMII-UK 

Original myGrid Partners : 

EMBL-EBI University of ManchesterUniversity of Newcastle University of Nottingham University 

of Sheffield University of Southampton IT Innovation Centre   

domain e-biology 

                                                      

17
 http://www.taverna.org.uk/ 

http://www.mygrid.org.uk/
http://www.omii.ac.uk/
http://www.mygrid.org.uk/
http://www.mygrid.org.uk/
http://www.omii.ac.uk/
http://www.ebi.ac.uk/
http://www.cs.man.ac.uk/
http://www.cs.man.ac.uk/
http://www.nottingham.ac.uk/cs/
http://www.nottingham.ac.uk/cs/
http://www.ecs.soton.ac.uk/
http://www.ecs.soton.ac.uk/
http://www.taverna.org.uk/


D3.1 Architecture and design of the platform 

 

 

 
26 

maturity Taverna 2.1 Workbench is the latest version of the Taverna Workbench. It is highly recommended 

that you use this version if you are new to Taverna, or to migrate to this version if you have used 

Taverna Workbench before. 

Taverna 1.7.2 Workbench, the latest version the Taverna 1.x Workbench series, is still available to 

download. Users are recommended to switch to Taverna 2.1 Workbench where possible. 

Taverna Server is the remote workflow execution service that enables you to set up a dedicated 

server for executing workflows remotely. Taverna Server uses the Taverna 1.7.x API. 

Many 'e-biology' projects can be accessed using Taverna: Seqhound, BioMoby, BioMart, BioTeam 

iNquiry, Utopis, BioMart, EMBOSS(Soaplab). 

future plans April 2010 – Taverna Server 2.x Beta 

May 2010 – Taverna Workbench 2.x Beta 

(Roadmap) 

community Mailing Lists: Different mailing lists with 2580 users, moderate usage. 

Taverna has a social web site named myExperiment with over 964 users, 82 groups, 301 workflows, 

101 files and 15 packs. MyExperiment 'makes it really easy to find, use and share scientific work-

flows and other files, and to build communities'.  

eHumanities text-mining 

integration Taverna runs on any modern PC or Mac, running any recent version of Windows, Linux, OSX and 

most UNIX like operating systems as long as Java version 5 

documentation Good documentation. However, some examples in the documentation are not in the distri-

bution. 

Although the GUI is really friendly and 'easy' to use, it does not include any help. 

The GUI: 

a) Installation and documentation 

Taverna GUI is nice and friendly. It is easy to install, execute and start with. Taverna is in 

general well documented. 

b) Workflow editor 

The editor is friendly and nice and includes drag-and-drop facilities and visual facilities. Taverna has 

two spaces: the editor (Advanced Model Explorer) and the visualization. It also includes and interac-

tive graphical (experimental) editor. The editor panel contains a tree with five initial branches for 

processors, inputs, outputs, data connections and coordination links. Basically, the process of editing 

workflows goes as follows:  

 The user selects the desired processors. When processors are drag-and-dropped into the editor 

panel they are automatically placed under the processors node.  

 The user has to define the inputs and outputs of the workflow and link the processors.  

http://www.taverna.org.uk/download/taverna-2-1/
http://www.mygrid.org.uk/tools/taverna/taverna-1/taverna-download/
http://www.mygrid.org.uk/tools/taverna/associated-tools/taverna-remote-execution/
http://www.taverna.org.uk/introduction/road-map/


D3.1 Architecture and design of the platform 

 

 

 
27 

 The graphical panel displays the diagram as we are editing the workflow. The system allows 

for different visualizations and the diagram can be saved. 

c) Inputs 

The edition of inputs (and outputs) in Taverna is different from that of Triana and Kepler. In Taverna, 

inputs are not longer listed together with processors. They have a different status. The user creates as 

many inputs as needed under the branch inputs in the editor panel. The input branch is populated with 

the created inputs. The user names the input and edits the metadata assigned to it. Metadata includes 

(i) free text description (used to give instructions to other users about how to populate the inputs) and 

(ii) tagging of the input (or output) with MIME types. In case of outputs, MIME types are crucial as 

they determine the selection of renderers within the result browser (see below). 

Taverna includes tools to deal with complex inputs in the workflow. When a web service has a com-

plex input (an xml document) it is hard for the user to provide the required data without having previ-

ous knowledge of the structure. Taverna includes an XML splitter processor which deals with complex 

inputs. XML splitters show the child inputs to the user. Child inputs can be edited as simple inputs and 

the values are assigned in the standard manner. When a processor has a complex input, the system 

automatically offers the possibility to include an XMLsplitter to deal with. 

d) Assigning values.  

Contrary to Triana and Kepler, in Taverna parameters do not have to be pre-specified. That is, the 

assignation of values to inputs is not done during workflow construction but is done during workflow 

execution. When a workflow is invoked, a pop-up window is displayed to assign input values. The 

user can enter values in different ways: typing, reading from a file, reading from a directory or from a 

previously saved file input definition.  

The assignation of values in Taverna is independent from the workflow definition. In Triana, for ex-

ample, if we want a workflow to read from a file, we need to select a specific read from file tool. Simi-

larly, if an xml output is produced, Taverna includes an xml viewer which automatically displays the 

data and allows the user to save it. In Triana, the user has to choose beforehand whether she/he wants 

to see the data (no syntax displayed) or save them. 

The system allows specifying default values. In this case, default values are assigned during the edi-

tion process. When running workflows requiring inputs, these can be saved. This allows to re-run the 

workflow using the same inputs. 

e) Outputs 

Taverna includes different renderers to display results (results may have different formats). Provided 

the correct MIME types are specified for the workflow output, the renderer selection mechanism will 

select, by default, an appropriate renderer component. Thus, the user can see plotters, graphics, xml 

files and text files without having to specify anything. 

Taverna includes third party visualisation tools. This is the case of SeqVISTA graphical tool (which 

displays some chemical/...' types) and Jmol (an open-source Java viewer for chemical structures in 

3D). Taverna allows the user to inspect and save intermediate inputs and outputs of individual proces-

sors both during and after a workflow invocation. 

Outputs can be saved in different manners. 



D3.1 Architecture and design of the platform 

 

 

 
28 

 Iterations: When a processor expects single sequence and receives a list of sequences iteration 

takes place automatically. Specific iterations behaviours can be defined.  

 Fault tolerance: Taverna includes the following fault tolerance settings: 

- The ability to retry after failures  

- User can set the number of retries 

- User can set the time between retries 

- The ability to define alternative processors when all retries have been exceeded 

- The ability to define a processor as critical, in this case the workflow stops  

 

 Discovery, metadata-management and grimoires registry: that is the component within myGrid 

responsible for semantic service search. Feta is composed of two components, namely Feta Client 

and Feta Engine. The Feta Client is a GUI-plug-in to Taverna which is used to search for services 

descriptions of which are provided by the Feta Engine. 

Taverna includes a good discovery tool, user can search by: name & description and, most interesting, 

by tasks, method and resources used, input and output, and type. Multiple queries can be issued at the 

same time to save the communication time. Multiple searching criteria can be combined in one query 

Grimoires is an UDDIv2 compliant service registry. It was originally developed for the myGrid Project 

(www.mygrid.org.uk). Currently, it is a managed program project of Open Middleware Infrastructure 

Institute www.omii.ac.uk. Grimoires provides metadata annotation/discovery and WSDL registra-

tion/discovery functions that are not supported by UDDI. 

f) Interesting features: 

 Taverna includes the Resource usage report functionality which shows the various external re-

sources used by the current workflow. Such functionality is useful for documentation pur-

poses. 

 The workflow diagram includes different visualization options. 

 For large workflows some non-interesting parts can be marked as boring. Boring processors 

are hidden from diagram. 

 myExperiment plug-in allows access to workflows in myExperiment. This allows for both 

browsing and direct invocation. 

 Provenance tools: The Taverna Log Book is a plug-in for Taverna that allows users to auto-

matically log their experiments in a database and browse, reload, rerun and maintain past 

workflows.  

 LSID (Live Science Identifiers) for editable metadata associated to a workflow. Any time the 

user edits a definition, the system connects to whatever LSID authority is configured in the 

mygrid.properties file and asks for a new LSID suitable for a workflow definition. This then 

provides a globally unique identifier for the workflow definition. 

 Taverna offers the ability to save input configuration to re-run the experiment with the same 

data input. 

 Ability to define alternate processors in case of failure 

http://www.mygrid.org.uk/
http://www.omii.ac.uk/


D3.1 Architecture and design of the platform 

 

 

 
29 

 Taverna allows the user to inspect and save intermediate inputs and outputs of individual 

processors both during and after a workflow invocation. 

 Good discovery tool (services can be discovered by exploiting their semantic descriptions. 

This is done by Tavern Feta Plug-in. 

 Taverna includes a BeanShell editor tool (this is easier than working with Java and does not 

need to compile and use external tools). 

 Breakpoints allow users to stop the workflow and edit data before going on. 

Taverna Server 

Taverna 1.7.x Server combines a Remote Execution Service with the Remote Execution plug-in for 

Taverna 1.7.x Workbench to give you the possibility to set up a dedicated server for executing work-

flows remotely. The user can submit a workflow for execution from Taverna 1.7.x Workbench, detach, 

and check the workflow execution status later either from the Workbench or from a Web page. 

Taverna future work (Roadmap) 

This is a list of some future work and improvements to be developed in 2010 for Taverna that may be 

interesting for the PANACEA project: 

 - Enhanced security support for Web services 

 - myExperiment integration 

 - A better option for long running workflows 

 - Taverna Server 2.x Beta 

Table 15 

Analysis of main characteristics 

Functionalities workflow editor. Multiple useful features. 

Integration Windows and Linux. myExperiment integration. 

Maturity Taverna 2.1 Workbench is the latest version of the Taverna Workbench. Tav-

erna is continuously growing. 

Support and plans 

for the future 

Good documentation. (Roadmap) 

Availability Free and under the Lesser General Public License (LGPL) Version 2.1. 

 

4.3.4 LoonyBin 

LoonyBin (Clark and Lavie, 2010) has been developed by Jonathan Clark (CMU) in order to address 

specific issues arising within the machine translation group. The MT group has developed a complex 

workflow using LoonyBin. There is a machine translation tool pack (Clark et al., 2010) available de-

veloped by members of the CMU machine translation group and others. 

http://www.mygrid.org.uk/tools/taverna/taverna-plugins/
http://www.taverna.org.uk/introduction/road-map/
http://www.taverna.org.uk/download/taverna-2-1/
http://www.taverna.org.uk/introduction/road-map/
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html


D3.1 Architecture and design of the platform 

 

 

 
30 

Table 16: LoonyBin technical overview 

Paradigm Data flow based Unix shell script generation 

Language Python/Bash 

Concurrence LoonyBin lets the user define different machine configurations (remote and local) and uses external 

schedulers (Torque, Sun Grid Engine (experimental support), Condor) and SSH to organize the work-

flow execution.  

Parallelism All vertices in a workflow will be run in parallel when their dependencies are satisfied. 

Loops Iterations are not supported. The only way to realise loops is to adapt the respective tools being exe-

cuted which makes it impossible to use one tool's output as a looping condition. 

Exception 

handling 

A basic system is implemented that sends a notice via e-mail in case an exception occurs. In case of a 

failure in the workflow, successfully performed steps will automatically be recovered. 

Other LoonyBin does not provide web services. 

 

Table 17: LoonyBin Descriptive information 

Developers Jonathan Clark (CMU) 

Domain Language Technology (Machine Translation) 

Maturity V0.5 has been released in 04/2010,  

future plans No information available. 

Community There does not seem to be any active community. The public mailing list has been used for an-

nouncements by Jonathan Clark only. 

Integration The Bash scripts generated by LoonyBin require a Unix-based system to run. The workflow editor 

runs on Windows, too. 

Documentation A comprehensive tutorial including an example workflow covers most relevant issues, but there is 

no complete reference. 

Availability LoonyBin is published under the LGPL. 

The GUI: 

a) Installation and documentation 

An installation is not necessary; the Java GUI can be executed straight after download on any operat-

ing system providing a Java runtime environment. The setup will still require basic Bash/Unix shell 

knowledge. There is a GUI for the workflow editor only which generates the command line shell 

scripts. It is mostly intuitive and the tutorial features a full description for the editor. However, the 

documentation does not cover the development of custom tool packs. 



D3.1 Architecture and design of the platform 

 

 

 
31 

b) Workflow Editor 

The editor works all by drag and drop; any component is presented in a list and can be added to the 

workflow as a vertex. The vertices are connected by dragging a line; subsequently the interface is con-

figured in a simple dialogue window providing the available inputs and outputs of the components. It 

can automatically connect corresponding inputs and outputs if they have appropriate names, e.g. 

nBestout and nBestIn. The components' specific parameters are defined in a side panel accessible 

through a click on the corresponding vertex. Different workflow paths can be defined that are condi-

tioned on certain parameter values, e.g. produced by certain components or configure by the user. 

After a workflow has been created, the editor generates a Bash script including the commands to call 

and path specifications (where to find the applied tools, where to write the output, which e-mail ad-

dress to notify in case of failure etc.). This script will then be executed manually in the Unix shell. 

Different machine configurations can be set and assigned to vertices which allows for automatic exe-

cution on remote Unix machines including scheduling. LoonyBin provides a web server on the home 

machine that can be used to monitor the tasks. 

c) Inputs 

The user creates as many inputs as needed. The editor provides readers for input files stored in the 

local or in a Hadoopi file system. Alternatively, a parameter box lets the user define any input parame-

ter. It can be configured such that it produces one or multiple outputs in any format as entered by the 

user. However, the configuration interface is not suitable for entering large data directly. 

The input readers will be connected to a vertex that is capable of reading the respective format, i.e. a 

self-defined converter or a processing tool that reads the input file's format. LoonyBin does not come 

with any format converters; the machine translation components provided by the package are expect-

ing data that is pre-formatted such that they suit the given tools. 

As LoonyBin has been developed in a language technology context, there are several relevant tools 

already included, such as tools dealing with monolingual and parallel corpora, the Stanford English 

syntax parser, the Berkeley word aligner, language modelling tools etc. 

d) Outputs 

The output of each vertex, if any, will be written into the directory specified when generating the 

script, as well as the log files. This enables a detailed inspection of the single components in a work-

flow and the recovering of the components' outputs in case of failure. 

Regarding the output format, appropriate converters need to be implemented if desired and necessary. 

The output will eventually be written into a file; LoonyBin does not come with any tool for visualiza-

tion or other analysis of the output. 

e) Including custom components 

In order to make additional tools available for the LoonyBin workflow editor, a simple descriptor 

needs to be written in Python. It has to provide a couple of pre-defined functions that call the respec-

tive tool with the appropriate arguments. 

4.3.5 Concluding remarks. Comparative analysis and recommendations. 

The test conducted by UPF showed that for the test scenario (a simple chain with some conditional 

clauses) all tested workflow editors had several problems: with Triana it was impossible to test the 

whole workflow because there were several server problems that could not be solved. Kepler could not 

deal with some loop problems. However, in some cases, Taverna presented some feasible alternatives 

to those problems. Another advantage of using Taverna is that myExperiment portal (it will be ex-



D3.1 Architecture and design of the platform 

 

 

 
32 

plained later) allows executing its workflows directly from a web browser. LoonyBin is rejected be-

cause it is not web service oriented. 

Table 18: Workflow systems comparative analysis 

 Functional-

ities 

Cost / 

learning 

curve 

Integrability Maturity Support and 

plans for the 

future 

Availability  

Triana       

Kepler       

Taverna       

LoonyBin       

 

4.4  Grid infrastructure 
Grid infrastructure is a technology that allows the coordination of all kind of computing resources. 

These resources are not under a centralized control and can be of different nature (processors, data 

storage, applications, etc.). From this point of view Grid is a new distributed computing infrastructure 

that interconnects heterogeneous resources using wide area networks like the internet that could be 

useful as a complete technical solution (web services, workflows, managing tools, etc) for PANA-

CEA. 

4.4.1 Globus 

The Globus
18

 Alliance is an international collaboration group working on research and development of 

Grid technologies. This Grid aims to allow users to share databases, on-line tools and computing re-

sources securely using some networks. 

The project has changed the way science is conducted. High-energy physicists designing the Large 

Hadron Collider at CERN are developing Globus-based technologies through the European Data Grid, 

and the U.S. efforts like the Grid Physics Network (GriPhyN) and Particle Physics Data Grid. Other 

large-scale e-science projects relying on the Globus Toolkit include the Network for Earthquake Engi-

neering and Simulation (NEES), FusionGrid, the Earth System Grid (ESG), the NSF Middleware Ini-

tiative and its GRIDS Center, and the National Virtual Observatory. 

The Globus Toolkit
®
 is a set of tools designed to provide distributed security, resource management, 

monitoring and discovery, and data management. GT5 is the latest version of the toolkit and its com-

ponents and libraries are compliant with the Web Services Resource Framework (WSRF), a set of 

standards in development in OASIS. The Globus Alliance is a leading member of the Global Grid 

Forum (GGF). This forum has defined a framework named Open Grid Services Architecture (OGSA) 

which Globus toolkit tools are compliant.  

Globus Toolkit ® 

                                                      

18
 http://www.globus.org 

http://www.globus.org/toolkit/
http://www.globus.org/wsrf/
http://www.oasis-open.org/
http://www.gridforum.org/
http://www.gridforum.org/
http://www.globus.org/ogsa/
http://www.globus.org/


D3.1 Architecture and design of the platform 

 

 

 
33 

The toolkit includes components that can be used either independently or together for resource 

monitoring, discovery, and management, plus security and file management. Using internet combined 

with these tools a user can access remote resources seamlessly but keeping the local access control.  

The Globus Toolkit has grown through an open-source strategy. Figure 2 shows the different compo-

nents classified regarding its functionality. 

Figure 2: Globus Toolkit software services 

 

Security 

The Globus toolkit provides WS and non-WS authentication and authorization capabilities. All 

security infrastructure in Globus grid is based on the standard X.509 end-entity and proxy 

certificates. Certificates are used to identify persistent entities such as users and servers. 

Certificates are used too to delegate temporary privileges to other entities. 

Globus security tools aim to identify users and services (authentication), to protect the integ-

rity and privacy of communications, authorization, and provide logs to verify that all the secu-

rity architecture works as planned. 

Security Key Concepts 

 Grid Security Infrastructure (GSI)  

o GSI C 

 Security Services 

o MyProxy 

 Run your own Certificate Authority (CA) 

o SimpleCA 

 Utilities 

o GSI-OpenSSH 

Data Management 

http://www.globus.org/toolkit/docs/5.0/5.0.0/security/key/#securityKey
http://www.globus.org/toolkit/docs/5.0/5.0.0/security/gsic/#gsic
http://www.globus.org/toolkit/docs/5.0/5.0.0/security/myproxy/#myproxy
http://www.globus.org/toolkit/docs/5.0/5.0.0/security/simpleca/#simpleca
http://www.globus.org/toolkit/docs/5.0/5.0.0/security/openssh/#openssh


D3.1 Architecture and design of the platform 

 

 

 
34 

GridFTP is a high-performance, secure, reliable data transfer protocol optimized for high-bandwidth 

wide-area networks. The GridFTP protocol is based on FTP, the highly-popular Internet file transfer 

protocol. 

Execution Management 

Execution management tools objective is the initiation, monitoring, management, scheduling, and/or 

coordination of remote computations (or jobs). GT5 includes the Grid Resource Allocation and Man-

agement (GRAM) interface as a basic mechanism for these purposes. 

Table 19 

Functionalities software toolkit used for building grids. Different modules that can be used 

independently. Security and massive data. 

Integration Linux. 

Maturity Latest Stable Release: 5.0.1  (23-3-2010).  

Support and plans 

for the future 

Good documentation. Each module has a lot of documentation. 

Availability Open source software. 

4.4.2 EGEE 

Enabling Grids for E-sciencE (EGEE
19

) is a European project that provides computing support for 

over 13,000 researchers working on different fields. 

All resources are being coordinated by EGEE now. However, by the end of April 2010, that responsi-

bility will be transferred to the European Grid Infrastructure (EGI). That means each country's grid 

infrastructure will be run by National Grid Initiatives. EGI‟s main goal is to ensure abundant and qual-

ity computing support for the research community for the future. 

The Worldwide LHC Computing Grid Project (WLCG) was created to prepare the computing infra-

structure for the simulation, processing and analysis of the data of the Large Hadron Collider (LHC) 

experiments. The LHC is the world‟s largest and most powerful particle accelerator. The WLCG and 

the EGEE projects share a large part of their infrastructure and operate it in conjunction. 

WLCG/EGEE operates a production Grid distributed over more than 200 sites around the world, with 

more than 30,000 CPUs and 20 PB of data storage. The status of the Grid can be seen from the various 

monitoring pages linked from the Grid Operations Centre (GOC
20

) monitoring page. 

Middleware 

The EGEE infrastructure is build upon middleware software named gLite
21

. Using gLite facilitates 

accessing shared storage resources across the internet and sharing computing resources as well. 

                                                      

19
 http://www.eu-egee.org/ 

20
 http://goc.grid-support.ac.uk/gridsite/monitoring/ 

21
 http://www.glite.org/ 

http://www.globus.org/toolkit/docs/latest-stable/
http://www.eu-egee.org/
http://goc.grid-support.ac.uk/gridsite/monitoring/
http://www.glite.org/


D3.1 Architecture and design of the platform 

 

 

 
35 

The available services in the gLite distribution can be broadly classified in two categories: 

- Grid Foundation Middleware, covering the security infrastructure, information, monitoring and ac-

counting systems, access to computing and storage resources, providing the basis for a consistent and 

dependable production infrastructure; 

- Higher-level Grid Middleware, including services for job management, data catalogs and data repli-

cation, providing applications with end-to-end solutions. 

The gLite middleware aims to ensure easy installation and configuration on the chosen platforms (cur-

rently Scientific Linux versions 4 and 5, and also Debian 4). 

Security 

To access WLCG/EGEE a user must be registered. The Grid Security Infrastructure (GSI) in 

WLCG/EGEE provides secure authentication and communication. The system is based on X.509 cer-

tificates, public key encryptation and the Secure Sockets Layer (SSL) communication protocol. GSI 

allows single sign-on and delegation. 

User interface 

A user can access the WLCG/EGEE from any machine where users have a personal account and 

where their user certificate is installed.  

The WLCG/EGEE user interface (UI) provides CLI
22

 tools to perform some basic Grid operations: 

• list all the resources suitable to execute a given job; 

• submit jobs for execution; 

• cancel jobs; 

• query the status of jobs and retrieve their output; 

• copy, replicate and delete files from the Grid; 

• submit and manage file transfer jobs 

• retrieve the status of different resources from the Information System. 

Job flow 

Figure 3¡Error! No se encuentra el origen de la referencia. illustrates the process that takes place 

when a job is submitted to the Grid. The individual steps are as follows: 

                                                      

22
 CLI: Command Line Interface 



D3.1 Architecture and design of the platform 

 

 

 
36 

Figure 3 

 

a. After obtaining a digital certificate from a trusted Certification Authority, registering and obtaining 

an account on a User Interface, the user is ready to use the WLCG/EGEE Grid. He logs in to the UI 

and creates a proxy certificate to authenticate him in subsequent secure interactions. 

b. The user submits a job from the UI to the gLite WMS (Workload Management System). In the job 

description one or more files to be copied from the UI to the WN (Worker Node) can be specified, and 

these are initially copied to the gLite WMS. This set of files is called the Input Sandbox. An event is 

logged in the LB (Logging and Bookkeeping Service) and the status of the job is SUBMITTED. 

c. The WMS looks for the best available CE (Computing element) to execute the job. To do so, it in-

terrogates the Information Supermarket (ISM), an internal cache of information which in the current 

system is read from the BDII, to CERN-LCG-GDEIS-722398 Manuals Series Page 30 determines the 

status of computational and storage resources, and the File Catalogue to find the location of any re-

quired input files. Another event is logged in the LB and the status of the job is WAITING. 

d. The gLite WMS prepares the job for submission, creating a wrapper script that will be passed, to-

gether with other parameters, to the selected CE. An event is logged in the LB and the status of the job 

is READY. 

e. The CE receives the request and sends the job for execution to the local LRMS (Local Resource 

Management System). An event is logged in the LB and the status of the job is SCHEDULED. 

f. The LRMS handles the execution of jobs on the local Worker Nodes. The Input Sandbox files are 

copied from the gLite WMS to an available WN where the job is executed. An event is logged in the 

LB and the status of the job is RUNNING. 



D3.1 Architecture and design of the platform 

 

 

 
37 

g. While the job runs, Grid files can be directly accessed from a SE or after copying them to the local 

file system on the WN with the Data Management tools. 

h. The job can produce new output files which can be uploaded to the Grid and made available for 

other Grid users to use. This can be achieved using the Data Management tools described later. Up-

loading a file to the Grid means copying it to a Storage Element and registering it in a file catalogue. 

i. If the job ends without errors, the output (not large data files, but just small output files specified by 

the user in the so called Output Sandbox) is transferred back to the gLite WMS node. An event is 

logged in the LB and the status of the job is DONE. 

j. At this point, the user can retrieve the output of his job to the UI. An event is logged in the LB and 

the status of the job is CLEARED. 

k. Queries for the job status can be addressed to the LB from the UI. Also, from the UI it is possible to 

query the BDII for the status of the resources. 

l. If the site to which the job is sent is unable to accept or run it, the job may be automatically resub-

mitted to another CE that satisfies the user requirements. After a maximum allowed number of resub-

missions is reached, the job will be marked as aborted. Users can get information about the history of a 

job by querying the LB service. 

Table 20 

Functionalities gLite middleware framework to create grid applications. Security and massive 

data. 

Integration Scientific Linux versions 4 and 5, and also Debian 4. 

Maturity 08.02.2010 - gLITE 3.2 Update 08 

Support and plans 

for the future 

Good documentation. Long term funding and support. 

Availability Open source software. Apache LICENSE-2.0 

4.4.3 MyGrid 

The myGrid
23

 team, led by Professor Carole Goble
24

 of the School of Computer Science at the Univer-

sity of Manchester
25

, UK. is a research group focusing on e-Science. The team is formed with different 

institutions and people from different disciplines together in an international environment. 

The myGrid team work to develop a suite of tools designed to help scientists with the creation of e-

laboratories and have been used in domains as diverse as systems biology, social science, music, as-

tronomy, multimedia and chemistry. The tools have been adopted by a large number of projects and 

institutions. 

                                                      

23
 http://www.mygrid.org.uk/ 

24
 http://www.mygrid.org.uk/about-us/people/core-mygrid-team/carole-goble/ 

25
 http://www.manchester.ac.uk/ 

http://www.apache.org/licenses/LICENSE-2.0
http://www.mygrid.org.uk/
http://www.mygrid.org.uk/about-us/people/core-mygrid-team/carole-goble/
http://www.manchester.ac.uk/


D3.1 Architecture and design of the platform 

 

 

 
38 

Tools 

These tools and infrastructure allow:  

- Design, edit and execution of workflows in Taverna 

- Sharing of workflows and related data by myExperiment 

- Cataloguing and annotation of services in BioCatalogue and Feta 

- Creation of user-friendly rich clients such as UTOPIA 

The myGrid e-Laboratory includes a suite of components for the creation, cataloguing, annotation, 

discovery and monitoring of services: 

- SoapLab - creation of services (wrapper). 

- BioCatalogue and Feta - cataloguing, annotation and discovery of services. 

- BioCatalogue, Feta and Find-O-Matic - discovery of services. 

- Workflow Monitor - monitoring of workflows and the services in them. 

- QuASAR - validation and inference of annotations. 

MyGrid and the MOBY
26

 consortium have developed a myGrid Ontology that is used for service an-

notation. This ontology is separated into two parts, the service ontology and the domain ontology. The 

service ontology aims to describe the web services from a technical point of view: it describes inputs, 

outputs, operations, etc. The domain ontology, on the other hand, describes the bioinformatics research 

and acts as an annotation closed vocabulary for bioinformatics data types.  

The scope of the ontology is limited to support service discovery. Each hierarchy contains abstract 

concepts to describe the bioinformatics domain at a high level of abstraction. By combining the terms 

from the ontology, descriptions of services are constructed to detail: 

   1. What the service does. 

   2. What data sources it accesses. 

   3. What each of the inputs and outputs should be. 

   4. Which domain specific methods the analysis involves. 

By describing the domain of interest in this way, users should be able to find appropriate services for 

their experiments from a high level view of the biological processes they wish to perform on their 

data.  

Scope of the myGrid ontology:  

 Informatics: captures the key concepts of data, data structures, databases and metadata. The 

data and metadata hierarchies in the ontology contain this information 

                                                      

26
 http://www.biomoby.org/ 

http://www.taverna.org.uk/
http://www.mygrid.org.uk/tools/myexperiment/
http://www.mygrid.org.uk/tools/service-management/biocatalogue/
http://www.mygrid.org.uk/tools/service-management/feta/
http://www.mygrid.org.uk/tools/rich-clients/utopia/
http://www.mygrid.org.uk/tools/service-management/soaplab/
http://www.mygrid.org.uk/tools/service-management/biocatalogue/
http://www.mygrid.org.uk/tools/service-management/feta/
http://www.mygrid.org.uk/tools/service-management/biocatalogue/
http://www.mygrid.org.uk/tools/service-management/feta/
http://www.mygrid.org.uk/tools/service-management/find-o-matic/
http://www.mygrid.org.uk/tools/taverna/associated-tools/workflow-monitor/
http://www.mygrid.org.uk/tools/service-management/quasar/
http://www.mygrid.org.uk/tools/service-management/mygrid-ontology/
http://www.biomoby.org/


D3.1 Architecture and design of the platform 

 

 

 
39 

 Bioinformatics: This builds on informatics. As well as data and metadata, there are domain-

specific data sources (e.g. the model organism sequencing databases), and domain-specific al-

gorithms for searching and analyzing data (e.g. the sequence alignment algorithm). The algo-

rithm and data resource hierarchies contain this information. 

 Molecular biology: This includes the higher level concepts used to describe the bioinformat-

ics data types used as inputs and outputs in services. These concepts include examples such as, 

protein sequence, and nucleic acid sequence. 

 Tasks: A hierarchy describing the generic tasks a service operation can perform. Examples in-

clude retrieving, displaying, and aligning. 

 Services: The concepts required to describe the function of web services and their parameters. 

The service ontology is described in more detail below. 

The myGrid ontology can be downloaded in OWL and RDFS. 

MyGrid uses a special XML file, called Semantic Service Descriptor, to provide user with much richer 

details and information about a WS. Every WS is described by its WSDL and its Semantic Service 

Descriptor using the Semantic Model (the ontologies). All these rich data can be afterwards used by 

the users for web services discovery, to create workflows, etc. 

Figure 19: WSDL / Semantic service description shows the relation between the WSDL and the Se-

mantic Service Descriptor. 

Web Service developer guidelines 

MyGrid aims to offer a guideline to WS developers to create WS-I
27

 compliant Web Services. How-

ever, this is a long-term goal. By now they basically want service providers to create web services that 

are compatible with Taverna applying the following guidelines: 

- The preferred binding style is Document/literal wrapped. 

- Avoid untested situations like: multiple WSDL imports, multiple service endpoints, ambiguous type 

names (identically named types that belong to different namespaces). 

- Avoid situations that are known to fail in Taverna: Cyclic references, Overloaded operations, using 

anyType type. 

Table 21 

Functionalities Tools and ontologies. 

Integration Linux and windows (depends on the tool). Very good integration between 

tools. 

Maturity Soaplab 2.2.0 (26-06-2009), Taverna 2.1.2 (2010), Biocatalogue (latest 

release 26-05-2010) 

                                                      

27
 Web Services Interoperability. http://www.ws-i.org/Profiles/BasicProfile-1.1.html 

http://www.mygrid.org.uk/tools/developer-information/webservice-developer-guidelines/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html


D3.1 Architecture and design of the platform 

 

 

 
40 

Support and plans 

for the future 

Good documentation. All tools have continuous support and development. 

Availability Free and open-source. 

4.4.4 TextGrid 

TextGrid
28

, is based on the Globus
29

 grid infrastructure and benefits from its security tools and integra-

tion capabilities to interconnect a group of web services designed to work with texts. The user inter-

face is build with the Eclipse RichClient Platform. 

The project is part of the D-Grid initiative
30

 in Germany and its main goal is to create a community for 

the collaborative editing, annotation and analysis of texts. 

Most tools in the TextGrid are implemented as web services. They represent simple functionalities as 

tokenization and lemmatizing and be executed alone or combined in workflows. The services can be 

registered into a topic map-based service registry
31

. 

To promote integration and interoperability there are different levels of integration in the system. For 

example, authentication is necessary from the third step on. Each initiative can choose how far they 

advance into the TextGrid service network. 

User interface 

The first user environment is an Eclipse-based client. Some web interfaces could be developed in the 

future. 

Grid access  

The service carries all the necessary information to be allowed into the grid. This includes information 

for authentication and logging. TextGrid is Shibboleth-enabled [SHIIBBOLETH
32

] and will intercon-

nect with the national scientific Shibboleth federation DFN-AAI [DFN] once productive. For the time 

being, users can register at TextGrid directly to be granted access. Grid access entails the possibilities 

to join projects, deposit and share (private) digital objects, and similar activities. In the future, licens-

ing policies may build on authentication information. 

Table 22 

Functionalities Globus based grid for text processing. Depends on Eclipse platform. Security. 

Limited amount of tools. 

Integration Services need to be Textgrid compliant (there are different levels of integra-

                                                      

28
 http://www.textgrid.de/ 

29
 http://www.globus.org/ 

30
 http://www.d-grid.de   

31
 To be implemented in TextGrid II. 

32
 http://shibboleth.internet2.edu/ 

http://www.textgrid.de/
http://www.globus.org/
http://www.d-grid.de/
http://shibboleth.internet2.edu/


D3.1 Architecture and design of the platform 

 

 

 
41 

tion) 

Maturity New and under development. 

Support and plans 

for the future 

The second phase of the project has as goals the conversion of the virtual 

research ambit into a sustainable operation, as well as achieving a wide base 

usability. 

Availability TextGridLab - Beta Version is free to be downloaded and open source pro-

ject. 

4.4.5 NorduGrid 

A project called "Nordic Testbed for Wide Area Computing and Data Handling" was launched in 

2001. Its goal was to create a Grid infrastructure which could handle research tasks at production 

level. As a result of that project a new middleware was developed. That middleware, called Advance 

Resource Connector (ARC), has been continuously improved to deliver a robust, scalable, portable 

and fully featured solution for a global computational and data Grid system. 

Grid technologies are not new and its architectures are widely used. However, most of the Grid soft-

ware is complex and not portable (a few OS are compatible). Installation is complex and maintenance 

costs are high. ARC middleware has been developed and improved giving special attention to reliabil-

ity, performance, ease of use and maintenance. 

NorduGrid architecture was designed following some basic principles: 

• Start with simple things that work and proceed from there 

• Avoid architectural single points of failure 

• Should be scalable 

• Resource owners retain full control of their resources 

• As few site requirements as possible: 

– No dictation of cluster configuration or install method 

– No dependence on a particular operating system or version 

• Reuse existing system installations as much as possible 

• The NorduGrid middleware is only required on a front-end machine 

• Compute nodes are not required to be on the public network 

• Clusters need not be dedicated to Grid jobs 

ARC provides a set of fundamental Grid services, such as information services, resource discovery 

and monitoring, job submission and management, brokering and data management and resource man-

agement. 

The middleware builds upon standard Open Source solutions like the OpenLDAP, OpenSSL, SASL 

and Globus Toolkit
®
 (GT) libraries. Most services are build on GSI security layer. 

http://www.nordugrid.org/documents/nordugrid-final.pdf
http://www.nordugrid.org/middleware
http://www.nordugrid.org/middleware
http://www.openldap.org/
http://www.openssl.org/
http://asg.web.cmu.edu/sasl/
http://www.globus.org/


D3.1 Architecture and design of the platform 

 

 

 
42 

Services: 

- Grid Manager 

- gridftpd  (the ARC/NorduGrid GridFTP server) 

- the information model and providers (NorduGrid schema) 

- User Interface and broker (a "personal" broker integrated into the user interface) 

- Extended Resource Specification Language (xRSL) 

- Replica Catalog 

- the monitoring system 

The standalone client is available for a dozen of platforms and can be installed in a few minutes. The 

server installation does not require a full site reconfiguration. The middleware can be built on any 

platform where the external software packages (like GT libraries) are available. 

ARC middleware is distributed under the Apache v2.0 license.  

4.4.6 Concluding remarks. Comparative analysis and recommendations. 

Globus and EGEE infrastructures are very similar solutions: they are solutions for very large scale 

grids providing security and massive data handling. Some drawbacks of these solutions are the big 

complexity of the infrastructure, the large learning curve for users, developers and system administra-

tors, the non-user-friendly user interfaces and the software compatibility limitations. On the other 

hand, MyGrid infrastructure offers tools with more user-friendly interfaces and a smaller learning 

curve. However, security is not implemented by default and massive data handling is not as well man-

aged as in the other solutions. 

The recommendation for PANACEA is to use MyGrid infrastructure and tools and benefit from its 

small learning curve and watch its roadmap plans that could solve part of its problems. However it is 

recommended to keep watching closely the big grids technological evolutions. It should be taken into 

account that Globus toolkit claims to be modular and some of its tools could be used for some concrete 

purposes. 

From the TextGrid experience it could be interesting to make a deeper analysis on the Shibboleth web 

single sign-on security system which could be useful for PANACEA.  

NorduGrid architecture can be considered a large scale Grid in which usability, costs and compatibility 

have been taken as key issues. However, it doesn‟t have the advantages of the myGrid approach and 

needs a further analysis and test. It could be a very interesting starting point for testing large scale 

Grids in PANACEA. 

 

http://www.nordugrid.org/arc/license.html


D3.1 Architecture and design of the platform 

 

 

 
43 

Table 23: Grid comparative analysis 

 Functional-

ities 

Cost / 

learning 

curve 

Integrability maturity Support and 

plans for the 

future 

Availability  

Globus       

EGEE       

NorduGrid       

MyGrid       

TextGrid       

4.5 The Registry 
In the distributed computing environment, applications that are available as web services are numerous 

and are growing in number. Users find it more and more difficult to find interesting web services to 

create their workflows. There is a need to have a list of existing web services. However, a list is not 

enough, web services need to be discovered and searched by users not only by their names, but for 

their descriptions, inputs, outputs, versions, etc. All this information encoded as metadata should be 

used to allow complex search queries. To this end, registries are developed to help users in their re-

search for web services. 

4.5.1 UDDI 

The need for a global registry for discovering and cataloguing web services brought Arriba, Microsoft 

and IBM together to work on a project called the Universal Description, Discovery and Integration 

[UDDI
33

]. 

UDDI is conceptually divided in three parts: first part stores the basic information about a service and 

the organization providing the service. The second part stores information using a taxonomy classifi-

cation and the third part is used to store technical information about the service such as its location and 

binding. 

All the information of the UDDI can be searched and retrieved using a web service API. 

Both UDDI and ebXML are maintained by OASIS (Organization for the Advancement of Structured 

Information Standards). However, it was reported in a CLARIN web services workshop that both sug-

gestions are not widely used in the research community. 

4.5.2 Feta 

Feta is a semantic discovery tool developed by myGrid team that can be used to search available ser-

vices and find those that best match the requirements of the user. It is used combined with the standard 

web services registry, namely UDDI. 

                                                      

33
 http://uddi.xml.org/ 

http://uddi.xml.org/


D3.1 Architecture and design of the platform 

 

 

 
44 

Feta search system allows the user to discover services based on metadata regarding the name of the 

application involved, operations, inputs, outputs, etc. It helps to find other web services with similar 

functionality so the user can choose or even replace a non available web service for another one. 

Feta can be downloaded as a plug-in to the Taverna 1.7.x Workbench and used to search over services 

that have been annotated with the myGrid ontology. There is no Feta plug-in for Taverna 2.1 Work-

bench, where the similar functionality will be provided by the BioCatalogue plug-in. 

4.5.3 BioCatalogue 

The main deliverable of the Web Services for Life Sciences project was a registry of curated biologi-

cal Web Services where users, researchers and curators can register, annotate and monitor Web Ser-

vices. The registry, called BioCatalogue
34

, is a BBSRC funded project and has been running since 1st 

June 2008. The project is a joint venture between the EMBL-EBI (led by Rodrigo Lopez) and the my-

Grid project at the University of Manchester. 

The BioCatalogue wants to be the single registration point for Web Service providers and the place 

where researchers look for services. All this community of experts, users, providers, etc. can meet, 

contact, and discuss using the BioCatalogue portal. Putting together expert curators, the web services 

and the users will provide monitor and catalogue and high quality annotations.  

Features 

Web service discovery  

- Handles service discovery by keywords or browsing the latest services submitted;  

- Handles service filtering by tags on services, operations, inputs, and outputs, as well as filtering by 

providers, submitters, and locations. 

- Exposes an OpenSearch description document. 

- Possibility to search the BioCatalogue with your data. 

Web service annotation 

- Supports annotation of services by tags, user comments and text description. 

- Annotated services or their parts (operations, inputs, outputs, etc.) are searchable.  

- Ability for users to provide many more types of annotations (like examples, name aliases, etc.). 

- Harvests all annotations and services from Feta. 

- Annotation can take the form of free text, tags, terms from selected ontology and examples values. 

Web service submission  

- Supports registration for SOAP, REST and Soaplab services.  

 

Web service monitoring  

                                                      

34
 http://www.biocatalogue.org/ 

http://www.mygrid.org.uk/projects/web-services-for-life-sciences/
http://www.biocatalogue.org/wiki/doku.php?id=public:help:biocatalogue:discovering_web_services
http://www.biocatalogue.org/wiki/doku.php?id=public:help:biocatalogue:annotating_web_services
http://www.biocatalogue.org/wiki/doku.php?id=public:help:biocatalogue:registering_web_services
http://www.biocatalogue.org/wiki/doku.php?id=public:help:biocatalogue:how_we_monitor_web_services
http://www.biocatalogue.org/


D3.1 Architecture and design of the platform 

 

 

 
45 

- Monitor the WSDL document and endpoints of services (BioCatalogue checks that the service end-

point responds to simple requests). 

Users  

- Supports user registration and user profiles for both regular users and service providers.  

- Supports Service rating. 

- Provides a user-friendly web 2.0 interface showed in Figure 20 (appendix 9.2.5).  

Source code 

The BioCatalogue source code is also free under the BSD License
35

. 

BioCatalogue is a Ruby on Rails application. 

Future work 

These are some of the new features still to come for BioCatalogue: 

 Support for DAS services registration  

 Integration with myExperiment: on one hand services from BioCatalogue will be displayed 

in myExperiment so users of myExperiment can browse them. On the other hand services 

within workflows in myExperiment will reference the appropriate services in BioCatalogue so 

users can click through to the information in BioCatalogue. 

 Integration to Taverna: users will be able to import Web Services and annotations to and 

from BioCatalogue and Taverna. 

 Public APIs: RESTful APIs to BioCatalogue. 

 myBioCatalogue: setup your private BioCatalogue for your project or organization. 

More detailed information can be found in the Biocatalogue 2010 roadmap. 

4.5.4 Concluding remarks. Comparative analysis and recommendations. 

Biocatalogue is clearly a good option to be used as a registry (specially combined with the rest of the 

myGrid tools). It‟s the one with the best user interface (a well designed and user-friendly web portal) 

and much more features. 

Table 24: registry comparative analysis 

 Func-

tionali-

ties 

Usability Cost / 

learning 

curve 

Integrability maturity Support and 

plans for the 

future 

Availability  

UDDI        

FETA        

                                                      

35
 Terms of use: http://beta.biocatalogue.org/termsofuse 

http://www.biocatalogue.org/wiki/doku.php?id=public:roadmap
http://beta.biocatalogue.org/termsofuse


D3.1 Architecture and design of the platform 

 

 

 
46 

BioCatalogue        

4.6 Wrappers 
In the NLP world there are many existing tools already developed that could be useful to be accessed 

as a web service. These tools, usually called using the command line, need that someone with web 

services programming skills develops the necessary code (in JAVA or others) to deploy that tool as a 

web service. 

Wrappers are tools designed to solve this situation. A wrapper is a set of tools which let a user with a 

few or none programming skills easily deploy some tools as a web service.  

4.6.1 Soaplab 

SoapLab and its new version SoapLab2 are a set of tools to deploy as web services already existing 

command line tools. Soaplab was designed for sets of similar tools such as the European Molecular 

Biology Open Software Suite (EMBOSS). 

Every EMBOSS program has different inputs, parameters and outputs to carry out its specific func-

tions. Soaplab makes use of a special description file called ACD (Ajax Command Definitions) which 

describe the command line for every program. It can specify the inputs, outputs (using files or not), 

mandatory or optional parameters, etc. ACD file can even store some help information of every pa-

rameter that can be recovered later for Soaplab clients to help users. Using the necessary metadata 

most command line tools can be described using an ACD file. 

In the end, Soaplab services share a common API disregarding all specific tool idiosyncrasies like 

programming language, operating system, command line syntax, etc. 

 To this aim Soaplab is built on metadata, API and a distributed architecture. Metadata: 

Soaplab uses metadata in order to describe individual tools in detail. 

o description, type, and provider of the given analysis tool. 

o names and types of the input data and command-line parameters. 

o names and types of the resulting output data. 

 The main Soaplab API allows the client 

o To determine the analysis type, category and all its metadata. 

o To send input data and parameters to the analysis. 

o To run the analysis. 

 Synchronously (by blocking the request until the analysis finishes)  

 Asynchronously (by creating a session identifier that can be later used by poll-

ing the server for the status and results). 

http://www.ebi.ac.uk/Tools/webservices/soaplab/overview
http://soaplab.sourceforge.net/soaplab2/


D3.1 Architecture and design of the platform 

 

 

 
47 

o To retrieve current analysis status, including various notification messages (if imple-

mented). 

o To retrieve data results. 

Metadata is the basis of Soaplab. A Soaplab2 service provider does not need to program anything but 

it needs to know how to describe its services by using metadata. 

Supported protocols 

The Web Services can be (unfortunately) accessed using several various protocols, or several flavours 

of the same SOAP protocol. The chosen protocol also determines what Java toolkit can be used (not 

every toolkit has support for every protocol). 

- At the moment, the main protocol is the SOAP protocol, using the document/literal flavour (jax or 

jaxws java toolkit). 

- Soaplab1: Soaplab2 also supports the SOAP protocol, using the rpc/encoded flavour. (axis1 java 

toolkit). 

Soaplab developers claim that if there is a demand for it, Restful interfaces could be added to Soaplab: 

“It would be relatively easy to add also the REST protocol (thus removing the SOAP layer com-

pletely). If there is a demand for it, let us know please.” 

Deployment 

Once Soaplab2 and Tomcat server are installed there are only three basic steps to deploy web services 

using Soaplab: 

1- create your ACD files 

2- generate
36

 XML by calling: ant gen 

3- deploy calling: ant jaxdeploy (or ant axis1deploy, depending of the protocol of 

your choice). 

Workflows 

Taverna workflow editor is an important tool for accessing Soaplab services. It uses a plug-in to ex-

tract metadata from the Soaplab service providing the user with extra information and capabilities. For 

example the polling support to adjust the timeouts of every Soaplab service. Only Taverna-1.7 is sup-

ported, Taverna-1.6 and Taverna-2.x are not supported. 

License 

Soaplab is free software under an Apache License, Version 2.0. 

Soaplab Typed Interface 

                                                      

36
 Because there are some doubts about executing this process under Windows, some research on this point is 

foreseen in the workplan.  

http://www.mygrid.org.uk/tools/taverna/
http://soaplab.sourceforge.net/soaplab2/LICENSE


D3.1 Architecture and design of the platform 

 

 

 
48 

Soaplab‟s generic interface (only one WSDL for all services) makes it possible to access any Soaplab 

web service regardless of the command line interface of underlying programs. This is very interesting 

for client developers. However it is not possible to specify input/output data types as part of Soaplab 

generic WSDL; instead the interface uses special methods to query this information from the XML. 

This difference from common WSDL interfaces, for example, doesn't allow standard Web Services 

clients to check/validate input data before sending a request or output data after a response has been 

received. 

Bioinformatics Web Services community thought that Soaplab should include input/output type de-

scriptions at WSDL level. To this end the Soaplab typed interface was developed. It can be easily acti-

vated and it provides a WSDL and type descriptions for every single web service. However, Soaplab 

clients and plug-in can still be used and benefit from all XML metadata. 

EMBOSS Standard Groups 

When developing an Emboss Soaplab web service the developer is strongly encouraged to fill a spe-

cial attribute named groups. This attribute must be filled with an EMBOSS Standard Groups possible 

value. Table 30 (appendix 9.2.1) shows the different possibilities to classify an EMBOSS tool or web 

service. These metadata, like all the ACD file data, is stored in the XML metadata file. Later, for ex-

ample, it can be used by FETA discovery plug-in for Taverna to find web services.  

UPF Soaplab2 example 

Some experiments have been developed here at UPF to try Soaplab2 functionalities and costs. The 

objective was to deploy a few web services and create a workflow with them. A step by step roadmap 

is presented: 

 - Soaplab2 and necessary software installation 

 - ACD metadata definition (for all  tools) 

 - Server deployment 

 - Web service test using Soaplab web client Spinet 

 - Taverna workflow editor installation 

 - Soaplab2 plug-in for Taverna installation 

 - Workflow development and test 

Soaplab helps the developer to deploy web services without having a deep knowledge about web ser-

vices. Learning to use ACD metadata files is easy and there are very simple examples to test. Spinet 

web client allows the developer to test the deployed web services. Figure 11: splitter WS and Figure 

12: Freeling WS show the Spinet web client used to test the Soaplab implementation of the splitter and 

Freeling tools. 

 Figure 13: Test workflow shows the developed chain: 

◦ Get_p: extracts plain text from JR-Acquis corpus (TEI) 

◦ Splitter: simple sentence splitter 



D3.1 Architecture and design of the platform 

 

 

 
49 

◦ Words_per_line_filter: max allowed words per sentence filter 

◦ Freeling_file: Freeling WS. 

Figure 14: detailed test workflow shows all the ports (inputs, outputs and parameters) and their con-

nections. 

Soaplab is a user-friendly and easy to install set of tools which can be very helpful to deploy web ser-

vices. The small learning curve combined with the small amount of work needed to deploy a web ser-

vice make this wrapper a really interesting option to help non skilled service providers. 

4.6.2 Concluding remarks. Comparative analysis and recommendations. 

Wrappers can be very useful tools combined with the usual way of deploying web services (develop-

ing JAVA code for example). From the PANACEA project point of view, having two different options 

to deploy tools as web services is very interesting. Service providers can then decide what option is 

better for them considering their resources. 

4.7 Sharing research objects (Workflows, ontology, etc.) 
Deploying tools as web services can be very useful for others researchers. With a growing community 

of users, researchers, service providers there is a growing need to share information and research files. 

Sharing already developed workflows can be a considerable reduction of duplicate work. Ontologies, 

vocabularies, schemas, etc. are all research objects that need a place to be shared and discussed. Hav-

ing a unique „point of entry‟ where users can easily find all necessary documents and files to start their 

work will help to create a bigger community. 

4.7.1 myExperiment 

MyExperiment is collaborative web portal where researchers can create groups, exchange information, 

discuss about topics and share workflows. All shared objects are sorted and searched easily using user-

friendly web 2.0 interfaces (Figure 21: myExperiment main page). 

MyExperiment is developed by a joint team from the University of Southampton and The University 

of Manchester in the UK, led by David De Roure and Carole Goble, and is funded by JISC and sup-

ported by EPSRC as part of the myGrid and e-Research South consortia and by Microsoft's Technical 

Computing Initiative.  

http://wiki.myexperiment.org/index.php/Team
http://wiki.myexperiment.org/index.php/User:DavidDeRoure
http://wiki.myexperiment.org/index.php/User:CaroleGoble
http://jisc.ac.uk/
http://mygrid.org.uk/
http://www.eresearchsouth.ac.uk/
http://www.microsoft.com/mscorp/tc/
http://www.microsoft.com/mscorp/tc/


D3.1 Architecture and design of the platform 

 

 

 
50 

Figure 4 

 

The myExperiment services are accessible through simple RESTful programming interfaces so they 

can easily be invoked from other web sites, wikis, etc. 

Users can execute workflows directly from the myExperiment portal. To do so users need access to a 

remote Taverna server. 

MyExperiment is downloadable for free and any institution, research group, etc. can run their own 

myExperiment instance. 

The source code is maintained on RubyForge and is available under the BSD licence. 

4.7.2 Concluding remarks. Comparative analysis and recommendations. 

Considering the relatively small amount of partners and users inside the PANACEA project develop-

ing a new very sophisticated portal or tool to share workflows could be not necessary. However, it 

could be very interesting for the PANACEA factory future to have a good portal (PANACEAexperi-

ment for example) where users could create communities, share workflows and discuss about research. 

From this point of view, adopting the myExperiment model could be a low cost solution that could 

provide PANACEA users with very mature and already developed solution. 

Another interesting aspect of the myExperiment regarding PANACEA project is the possibility to 

execute workflows directly from the website. This means a new or non-expert user could test a work-

flow without having to install anything on his/her computer. On the other hand, an expert user could 

develop very complex workflows using Taverna and get feedback from others users so the workflow 

can be improved. 

http://rubyforge.org/projects/myexperiment


D3.1 Architecture and design of the platform 

 

 

 
51 

4.8 Relevant projects 

4.8.1 KYOTO project 

The goal
37

 of the KYOTO project (ICT-211423) is to develop an information and knowledge sharing 

system that relates text in various languages to a shared ontology in such a way that it enables the ex-

traction of deep semantic relations and facts from text in a specific domain and for a closed set of lan-

guages: English, Dutch, Italian, Spanish, Basque, Mandarin Chinese and Japanese
38

. We surveyed 

KYOTO because this distributed architecture and its data formats could be interesting for PANACEA 

design when working with the second version of the travelling object. 

The KYOTO system  

The KYOTO system aims at establishing communication and interpretation across languages and cul-

tures and (at) supporting the building and maintaining the system by groups of people in a shared do-

main and area of interest. The system consists of 4 main components
39

: 

 WikyPlanet: a semantic media Wiki for collecting and sharing textual information  in a com-

munity; 

 KyotoCore: pipeline architecture of modules for processing text documents for term and con-

cept extraction and for text mining; 

 Wikyoto: Wiki platform for editing domain terms and concepts across different languages and 

cultures; 

 DebVisDic platform: database system for storing the Wordnets and the central ontology; 

The goal of KYOTO is a system that allows people in communities to define the meaning of their 

words and terms in a shared Wiki platform so that it becomes anchored across languages and cultures 

but also so that a computer can use this knowledge to detect knowledge and facts in text. KYOTO will 

represent this knowledge so that a computer can understand it. 

The KYOTO system in 6 steps
40

 

1. People from a domain specify the locations of diverse and distributed sources of knowledge in 

different languages. They can do this through  Wikyplanet.  

2. The text in various languages is captured from the sources and offered to the KYOTO system  

3. Term yielding robots (so-called Tybots) automatically extract all the important terms and pos-

sible semantic relations and relate these to existing semantic networks (Wordnets) in each lan-

guage.  

                                                      

37 See Deliverable D10.1 in www.kyoto-project.eu 

38 KYOTO is focused to the domain of the environment and specifically to the topic of ecosystem servic-

es, but  the system is designed to be used for any language and to be applied to any domain. 

39 See Deliverable D10.2 in www.kyoto-project.eu 

40 Annual report 2009, www.kyoto-project.eu 



D3.1 Architecture and design of the platform 

 

 

 
52 

4. The Wikyoto (wiki-environment) allows the domain people to maintain the terms and con-

cepts and agree on their meaning within the community and across languages.
41

 

5. Kybots use the terms and knowledge to detect factual data in the text in various languages.  

6. The factual data is indexed and can be accessed by anybody through semantic search, again in 

various languages 

Some useful KYOTO tools 

The following tools are the ones that can be useful at the beginning of PANACEA project, just to have 

an idea of how similar problems (for instance multi word expressions) have been addressed. The Ty-

bot has been cited because it represents an example of simple parser of the KAF structure (see 4.8.1.1). 

Indeed, having a database is useful in the PANACEA platform for managing, storing large amounts of 

data in a little response time. 

- The Kyoto Multiword Tagger detects multi word expressions in the output of the parser and restruc-

tures the KAF according to the token span. Multi word expressions are thus seen as groups of token 

IDs. 

- The Kyoto Tybot extracts terms from the KAF representations and stores these in a term database. 

- The Kyoto Ontotagger inserts ontological information extracted from a knowledge base into the 

document's KAF structure. Ontotagger has been cited as it can be transformed into a web service with 

Soaplab. 

4.8.1.1 The Kyoto Annotation Framework (KAF) 

In the project, information is encoded according to the Kyoto Annotation Framework (KAF). The 

format defined by KAF is compatible with the Linguistic Annotation Framework (LAF) (Ide and 

Romary, 2003) but imposes additional, more specific annotation standardisations due to the specific 

domain KYOTO deals with. KAF stores morphosyntactic and semantic annotations. It is realised by 

implementing dialects of the existing ISO standards MAF (morphosyntactic annotation) (Clément and 

de la Clergerie 2005) and SynAF (syntactic annotation) (Declerck 2006). 

The root element of a KAF file is <KAF> which has one element xml:lang defining the document 

language: 

<KAF xml:lang=”en”> … </KAF> 

The document header is marked by the optional, but recommended <kafHeader> tag. It can contain 

the elements <fileDesc>, <public> and <linguisticProcessors>. The latter has one or more <lp> 

elements describing the linguistic processors used to produce the document. The header elements' 

possible attributes are shown in this example extracted from (Agirre et al., 2009): 

<kafHeader>  

 <fileDesc title="3_3012" author="WWF" filename="KYOTO_3_3012" file-

type="PDF" pages="19"/>  

                                                      

41 The meanings are formalized in a domain ontology which can be used by computer programs.  



D3.1 Architecture and design of the platform 

 

 

 
53 

  <public publicId="3_3012" uri="http://kyoto.org/docs/KYOTO_3_3012.pdf" />  

    <linguisticProcessors layer="text">  

      <lp name="Freeling" version="2.1" timestamp="2009-06-25T10:05:00Z"/>  

    </linguisticProcessors>  

</kafHeader>  

The document's actual content is tagged by the <text> element. Within that, the word forms are tagged 

by the <wf> element with an obligatory wid attribute (word id) and some optional attributes: sent (sen-

tence id), para (paragraph id), page (page id), and xpath (XML xpath expression). An example from 

(Agirre et al., 2009): 

<text> 

  <wf wid="w1" sent="s1" para="p1">John</wf> 

  ... 

</text> 

Terms (<term> elements) group word forms and provide information about type (open category, 

closed category, or entity), named entity type if the term is a named entity (type netype), lemma, part 

of speech (attribute pos), case and the head word's id if the term is a compound. All the term defini-

tions are enclosed by a <terms> tag and followed by a <span> tag that defines the word forms that 

are part of the given term. 

Additionally, a term can be assigned to external resources  such as knowledge bases or ontologies in 

the <externalReferences> context. Each resource is declared by the <externalRef> tag comprising the 

attributes resource (the resource id), reference (the resource code), and confidence (a confidence 

weight between 0 and 1). 

The <component> element assigns a compound to a term. It provides information about identifier 

(attribute id), lemma (attribute lemma), part of speech (attribute pos), and case (attribute case). An 

example adapted from (Agirre et al., 2009) (note that the content given here as an example does not 

necessarily make sense): 

<terms> 

  <term tid="t1" type="entity" lemma="John" pos="R" netype="person">  

  <span> 

    <target id=”w1”/> 

  </span> 

  <externalReferences>  

    <externalRef resource="WN-1.7" reference="ENG-17-00861095-v" confi-
dence="0.80"/>  

    <externalRef resource="WN-1.7" reference="ENG-17-00859568-v" confi-
dence="0.20"/> 

    ... 



D3.1 Architecture and design of the platform 

 

 

 
54 

  </externalReferences> 

  </term>  

  ... 

</terms> 

Additional relations can be defined in similar fashions: Dependency relations (<deps>), Chunks 

(<chunk>), events (<events>), quantifiers (<quantifiers>), and time expressions (<timexs>) according 

to the Timex specification (Lee et al., 2007). The definitions work essentially in the same ways as in 

the elements presented in the examples, e.g. each dependency relation within a <deps> environment is 

defined by a <dep> tag. The full KAF reference is given by (Agirre et al., 2009). 

4.8.2 ACCURAT 

ACCURAT is a Collaborative project funded within FP7-ICT-2009-4 call and action ICT-2009.2.2: 

Language-based interaction under Grant agreement no. 248347, cf. www.accurat-project.eu 

The aim of the ACCURAT project is to research methods and techniques to overcome the lack of lin-

guistic resources for under-resourced areas of machine translation. The main goal is to find, analyze 

and evaluate novel methods that exploit comparable corpora on order to compensate for the shortage 

of linguistic resources, and ultimately to significantly improve MT quality for under-resourced lan-

guages and narrow domains. 

One focus in this project is to define methods and tools to represent comparable corpus data, and pro-

vide measures for comparability. In this context, the project proposed an extension to the CES stan-

dard in two ways: 

One deals with the representation of the single texts, and includes an extended source description to 

cover information about genre, domain, encoding, and cleaning-techniques to clean the texts, as well 

as the original HTML document (as the HTML structure may be relevant to determine comparability). 

Figure 5: ACCURAT proposal for extension of CES header 

 

http://www.accurat-project.eu/


D3.1 Architecture and design of the platform 

 

 

 
55 

The other extension focuses on an extension of the alignment, and proposes an extension of attributes 

in the linkGrp tag such that the alignment level (values: parallel | strongly comparable | weakly com-

parable) and the alignment decision could be expressed: 

Figure 6: ACCURAT proposal for extension of the linkGrp tag 

 

Once an automatically computable metric for the comparability of corpora / paragraphs / sentences 

will be available, this may form another attribute in the linkGrp tag. 

Both proposals are extensions to the existing CES standard, required to deal with comparable corpora. 

The CES standard and these extensions could be useful or at least be used as a guideline for PANA-

CEA corpus representation. 

5 PANACEA Platform requirements 
The aim of this section is to list the requirements for the Platform and tools that deal with the technol-

ogy needed to deploy the factory, its usability and interoperability to determine if the PANACEA ser-

vice portfolio could meet the users‟ needs. 

As agreed on the technical meeting in Athens (April 2010), the PANACEA platform user require-

ments will be adopted directly from the work developed in Workpackage 8 (Evaluation in industrial 

environments) in its first deliverable D8.1. On the other hand, the functional requirements will be 

adopted from the work developed in Workpackage 7 (Evaluation of components integration and pro-

duced resources) in deliverable D7.1. 

6 PANACEA Platform design 
This section is devoted to design the whole PANACEA platform: choose the necessary technologies, 

choose alternatives, design the data format and guidelines, etc. 

The section is divided as follows: 

 Travelling object. Corpus and data format. 

 Common interfaces design. 

 Panacea Platform technologies. 

6.1 Travelling object. Corpus and data format 

6.1.1 Introduction 

This is a proposal on the format of the PANACEA corpora files (a.k.a. travelling objects) to be 

annotated by, and exchanged between, the different tools of the PANACEA factory.  



D3.1 Architecture and design of the platform 

 

 

 
56 

It has been observed that the LRs and Technologies community has not reached a consensus in 

defining an encoding for annotated corpora, while relevant efforts have resulted in proposals that have 

not been used widely. On the other hand, there is the need to harmonize the output of the large variety 

of tools to be integrated in the PANACEA factory, and in doing so it would be nice if we could avoid 

reinventing the wheel, at least in some aspects of the definition of this output. Thus, this document is 

based on, among other sources: 

 PANACEA partners‟ descriptions of tools and encodings they already use
42

 

 Gr. Thurmair‟s (LG) “Proposal for corpus representation in PANACEA”
43

 

 the XCES Corpus Encoding Standard
44

. 

 informal communications concerning similar efforts in the Accurat project 

 the KAF from the KYOTO project 

In a technical meeting held on April 15th, PANACEA decided to proceed stepwise before deciding the 

final format of the Travelling Object. It was decided to use the minimal common vertical in-line for-

mat used by WP4 tools for the first version of the platform (t14), and to carefully decide on further 

extensions after having achieved a first common definition. 

In the following sections of this document, we propose encodings for the output of the tools for corpus 

acquisition and boilerplate removal, text processing and alignment, which are the ones to be delivered 

in t14. A revision and extension of this proposal is planned (see  section 7).  

6.1.2 Crawling and boilerplate removal 

In this section, we propose encodings for the output of the tools for corpus acquisition and boilerplate 

removal. In this and the following sections, we will use two web pages
45

 (and their derivatives) as 

examples in English and Spanish. The two web pages focus on the same international news, i.e. the 

EU aid for Haiti after the 2010 earthquake. 

English (http://ec.europa.eu/news/external_relations/100218_en.htm) 

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 
"http://www.w3.org/TR/html4/loose.dtd"> 

2 <html lang="en"> 
3     <head> 
4         <META http-equiv="Content-Type" content="text/html; charset=UTF-

8"> 

5         <meta name="Title" content="Haiti on our minds"> 
6         <meta name="Creator" content=""> 
7         <meta http-equiv="Content-Language" content="en"> 

                                                      

42
 http://projectmanagement.panacea-lr.eu:9950/projects/panacea-project/conversations/17 

43
 http://projectmanagement.panacea-lr.eu:9950/projects/panacea-project/conversations/12 

44
 http://www.xces.org 

45
 Both “web pages” include the title, some sentences, and some boilerplate text from the actual web pages on 

the European Commission news site. Sentences are modified versions of the original, for exemplification pur-

poses. 

http://ec.europa.eu/news/external_relations/100218_en.htm


D3.1 Architecture and design of the platform 

 

 

 
57 

8         <meta name="Type" content="57"> 
9         <meta name="Classification" content="26000"> 
10         <meta name="Keywords" 

content="EU,Europe,European,commission,Haiti,earthquake,homeless,aid,ass

istance,humanitarian,response,relief,shelter,hurricane,rainy,season,fund

ing,support,ECHO,donors,conference,rebuilding,reconstruction,gendarme,po

lice,military"> 

11         <meta name="Description" content="Shelter seen as the top 
priority as EU ups aid to Haiti"> 

12         <meta name="Date" content="18/02/2010"> 
13         <title>Haiti on our minds</title> 
14     </head> 
15     <body> 
16     <h1>Haiti on our minds</h1> 
17     <p>Commission calls for €90m more in aid for the quake-stricken 

country. This amount will be drawn from EU emergency funds. </p> 

18       <div><a href="notice.html">Legal notice</a>| <a 
href="#top">Top</a></div> 

19     </body> 
20 </html> 

Spanish (http://ec.europa.eu/news/external_relations/100218_es.htm) 

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 
"http://www.w3.org/TR/html4/loose.dtd"> 

2 <html lang="es"> 
3     <head> 
4         <META http-equiv="Content-Type" content="text/html; charset=UTF-

8"> 

5         <meta name="Reference" content="EUROPA/"> 
6         <meta name="Title" content="La UE enviará más ayuda a Haití"> 
7         <meta name="Creator" content=""> 
8         <meta http-equiv="Content-Language" content="es"> 
9         <meta name="Type" content="57"> 
10         <meta name="Classification" content="26000"> 
11  <meta name="Keywords" 

content="UE,Europa,Europea,Comisión,Haití,terremoto,personas sin 

hogar,ayuda,asistencia,humanitaria,respuesta,auxilio,refugio,huracán,de 

lluvias,estación,financiación,apoyo,ECHO,donantes,conferencia,reconstruc

ción,gendarme,policía,militar"> 

12         <meta name="Description" content="Los refugios, máxima prioridad 
de las ayudas de la UE a Haití"> 

13         <meta name="Date" content="18/02/2010"> 
14         <title>La UE enviará más ayuda a Haití</title> 
15       </head> 
16     <body> 
17     <h1>La UE enviará más ayuda a Haití</h1> 
18     <p>La Comisión pide otros 90 millones de euros de los fondos de 

emergencia europeos.</p> 

19       <div><a href="aviso.html">Aviso jurídico</a> | <a 
href="#top">Comienzo</a></div> 

20     </body> 
21   </html> 

We will assume that the PANACEA bilingual crawler has fetched both pages and stored them
46

 in a 

local repository. The basename convention for the html file will be “Domain + _ + YYYYMMDD  

                                                      

46
  We assume that the two pages will be both logged as candidates for extraction of parallel sentences. In the 

case of monolingual crawling, no similar information will be logged.  

http://ec.europa.eu/news/external_relations/100218_es.htm


D3.1 Architecture and design of the platform 

 

 

 
58 

+ _ + ShortTitle + _ + Lang”, where YYYYMMDD is the date the data was crawled and 

stored in the repository. Thus our 2 example documents will be stored as 

news_20100514_haiti_en.html and news_20100514_haiti_es.html. 

For each locally stored web page, the crawler will also create an XML file with the extension 

basic.xml. This file will contain a header with some automatically extracted metadata and a link to 

the html file, as in the next listing for the Spanish document.  

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
59 

1 <?xml version="1.0"?> 
2 <cesDoc id="news_20100514_haiti_es" version="0.4"  

xmlns="http://www.xces.org/schema/2003"> 

3   <cesHeader version="0.4"> 
4     <fileDesc> 
5       <titleStmt> 
6          <title>La UE enviará más ayuda a Haití</title> 
7    <respStmt> 

8        <resp> 

9         <type>Crawling</type> 

10         <name>Panacea partner</name> 

11        </resp> 

12    </respStmt>       

13       </titleStmt> 
14       <sourceDesc> 
15        <biblStruct> 
16         <monogr> 
17         <author>EU web author if available</author>    

18         <imprint> 
19         <publisher>EU</publisher> 
20         <pubDate>2010-02-20</pubDate> 
21         <eAddress 

type="web">http://ec.europa.eu/news/external_relations/100218_es.htm</eAdd

ress>    

22         </imprint> 
23         </monogr> 
24        </biblStruct> 
25       </sourceDesc> 
26     </fileDesc> 
27   
28     <profileDesc>  
29       <langUsage> 
30    <language iso639="es"/> 

31       </langUsage> 
32       <textClass> 
33    <keywords> 

34        <keyTerm>Comisión</keyTerm> 

35      <keyTerm>Haití</keyTerm> 

36            <keyTerm>terremoto</keyTerm> 
37            <keyTerm>. . .</keyTerm> 
38          </keywords> 
39          <domain>International News</domain><!--  or (automotive, 

environment,  legal )--> 

40          <subdomain>Optional information on subdomain</subdomain> 
41          <subject>Optional information on the subject</subject> 
42       </textClass> 
43       <annotations> 
44         <annotation ann.loc="news_20100514_haiti_es.html" 

type="htmlsource"/> 

45       </annotations> 
46     </profileDesc> 
47   </cesHeader> 
48 </cesDoc> 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
60 

As shown on the listing above this is a cesDoc that can be validated against the already available XCES 

standard schemas. All metadata for this file is contained inside a cesHeader element
47

.  Extensive 

documentation for this and all other element in the XCES standard can be obtained from the XCES site. 

Here we can briefly discuss some crucial subelements of the header. 

 The <fileDesc>  element can be used for information about the title of the document and any 

annotations added. The <sourceDesc> subelement can be used for information on the 

original author and publication date, the publisher of the document, and the URL it was 

downloaded from. One or more <respStmt> subelements can be used to describe operations 

and people/groups responsible for these operations on this particular document. 

 The <profileDesc>  element  groups information describing the language(s) of the document 

(<langUsage>) and  the nature or topic of a text (<domain>, <subdomain>, 

<subject>, <keywords>). 

 The <annotations> subelement of the <profileDesc> can be used for storing links to 

other documents relevant to this basic version. In the example above, a link to the original html 

document is shown. In future versions of the Panacea travelling object, this element can be used 

to include links to files with stand-off annotation. 

Assuming that the html source has been cleaned from a boilerplate removal tool as described in the 

corpus acquisition process of D4.1, the basic.xml file will also contain the paragraph-segmented 

texual content of the HTML pages as in the following listing:  

1 <?xml version="1.0"?> 
2 <cesDoc id="news_20100514_haiti_es" version="0.4"  

xmlns="http://www.xces.org/schema/2003"> 

3 <cesHeader> 
4 <!- . . . -> 
5 <!-- We add another respStmt for the cleaning. Everything else as in the 

header above  --> 

6   <respStmt> 

7   <resp> 

8     <type>Boilerplate removal, text extraction, paragraph detection, 
etc.</type> 

9     <name>Panacea partner</name> 
10      </resp> 
11   </respStmt>       

12  </cesHeader> 
13 <!- . . . -> 
14 <!-- We add a text and a body element for storing the clean text. These are 

necessary elements so that this file can be validated against XCES 

schemas. --> 

15  <text> 
16   <body> 
17 <p id="p1" type="title"> 
18 La UE enviará más ayuda a Haití 
19 </p> 
20 <p id="p2"> 

                                                      

47
 It should be noted that similar headers document manually and automatically annotated files in large corpora like 

the American National Corpus. A similar header has also been proposed for accompanying comparable corpora in 

the Accurat project. 



 

D3.1 Architecture and design of the platform 

 
 

 

 
61 

21 La Comisión pide otros 90 millones de euros de los fondos de emergencia 
europeos. 

22 </p> 
23 </body> 
24 </text> 
25 </cesDoc> 

In this version of the basic.xml file, we can either keep the paragraph elements <p> from the HTML 

source, or perform paragraph detection using a specific tool. To each paragraph element we add an 

obligatory id attribute whose values follow the convention  p1,p2,...,pN. If the paragraph language has 

been detected as different from the main language of the document, an optional lang attribute is added, 

whose values are ISO 639-1 two letter language codes. If needed, an optional type attribute is also 

added. The  value of this attribute is indicative of the paragraph‟s function in the text, for example 

title. Another optional attribute for <p> elements is topic, to be used in cases where the topic has 

been detected as different from the one described in the <domain>, <subdomain>, <subject> 

helements of the header.  

The basic.xml document will be the starting point for the rest of the processing tools.  

6.1.3 Text processing 

In this section, we propose encodings for the output of the tools for text processing.  

6.1.3.1 Sentence splitting and tokenization 

Operations by the NLP tools assumed at this stage: 

 Paragraphs are split into sentences 

 Sentences are tokenized  

The output of these tools should be saved in an XML file that will follow the same basename conventions 

and will have the extension tok.xml. 

In this file, we add a sentence element <s> which has an obligatory id element and an optional lang 

attribute, if the sentence language is different from the main language of the document. Another optional 

attribute for <s> elements is topic, to be used in cases where the topic has been detected as different 

from the one described in the <domain>, <subdomain>, <subject> elements of the header. As 

it has been decided in the Panacea Athens techical meeting, the tokens for each sentence will be included 

in a one token per line fashion inside the sentence they belong to
48

.  

1 <?xml version="1.0"?> 
2 <cesDoc id="news_20100514_haiti_es" version="0.4"  

xmlns="http://www.xces.org/schema/2003"> 

3 <cesHeader> 
4 <!- . . . -> 
5 <!-- We add another respStmt for sentence splitting and the tokenization. 

Everything else as in the header above  --> 

6   <respStmt> 

7   <resp> 

8     <type>Sentence splitting and tokenization.</type> 
9     <name>Panacea partner</name> 

                                                      

48
 Please notice that although such a file can still be validated against the XCES schemas, this file is no longer a 

proper XCES document, since the latter standard targets stand-off annotation. 



 

D3.1 Architecture and design of the platform 

 
 

 

 
62 

10      </resp> 
11   </respStmt>       

12  </cesHeader> 
13 <!- . . . -> 
14 <!-- We add sentences and tokens in a verticalized format. --> 
15  <text> 
16   <body> 
17  <p id="p1" type="title"> 
18  <s id="s1">  
19  La 
20  UE 
21  enviará  
22  más  
23  ayuda  
24  a  
25  Haití  
26  </s> 
27  </p> 
28  <p id="p2">  
29  <s id="s2">  
30  La 
31  Comisión  
32  pide  
33  otros  
34  90_millones  
35  de  
36  euros  
37  de 
38  los  
39  fondos  
40  de  
41  emergencia  
42  europeos  
43  .  
44 </s> 
45 </p> 
46 </body> 
47 </text> 
48 </cesDoc> 

6.1.3.2 POS Tagging and lemmatization 

Operations by the NLP tools at this stage: 

 Each token is assigned a tag conveying POS + morphosyntactic descriptions  

 Each token is optionally assigned a lemma 

The output of these tools should be saved in an XML file that will follow the same basename conventions 

and will have the extension tag.xml. 

Each token in this file will be accompanied by a tag conveying POS and morphosyntactic information, 

and optionally a lemma. Tokens, tags and lemmas will be separated by tabs.   

1 <?xml version="1.0"?> 
2 <cesDoc id="news_20100514_haiti_es" version="0.4"  

xmlns="http://www.xces.org/schema/2003"> 

3 <cesHeader> 
4 <!- . . . -> 
5 <!-- We add another respStmt for tagging and lemmatization. Everything else 

as in the header above  --> 



 

D3.1 Architecture and design of the platform 

 
 

 

 
63 

6   <respStmt> 

7   <resp> 

8     <type>Tagging and lemmatization.</type> 
9     <name>Panacea partner</name> 
10      </resp> 
11   </respStmt>       

12  </cesHeader> 
13 <!- . . . -> 
14 <!-- We add tags and lemmas in a verticalized format. --> 
15  <text> 
16   <body> 
17  <p id="p1" type="title"> 
18  <s id="s1">  
19  La AFS el 
20  UE N4666 UE  
21  enviará VDU3S- enviar  
22  más D más  
23  ayuda N5-FS ayuda  
24  a P a  
25  Haití N4666 Haití  
26  </s> 
27  </p> 
28  <p id="p2">  
29  <s id="s2">  
30  La AFS  el  
31  Comisión N4666 Comisión  
32  pide VDR3S- pedir  
33  otros EN--66 otro  
34  90_millones X 90_millones  
35  de P de  
36  euros N5-MP euro  
37  de P de 
38  los AMP el  
39  fondos N5-MP fondo  
40  de P de  
41  emergencia N5-FS emergencia  
42  europeos JQ--MP europeo  
43  . SENT .  
44 </s> 
45 </p> 
46 </body> 
47 </text> 
48 </cesDoc> 

6.1.3.2.1 An alternative format for tokens 

It could be the case that a PANACEA tool (like a word/chunk aligner) may need to refer to separate 

tokens in the tokenized or the tagged file. In that case, a better suggestion would be to have a t element 

for the representation of tokens, instead of a whitespace separated, one-token-per-line representation. 

The t elements in such a file would be minimally composed by a properly valued id attribute (t1,t2, 

…,tN), and a word element. In the case of tagged files, a tag and an optional lemma attribute are also 

included, as in the listing below: 

1 <text> 
2   <body> 
3     <p id="p1" > 
4       <s id="s1">   
5        <t id="t1_1" tag="AFS" lemma="el" word="La"/> 
6        <t id="t1_2" tag="N4666" lemma="UE" word="UE"/> 
7        <t id="t1_3" tag="VDU3S-" lemma="enviar" word="enviará"/> 



 

D3.1 Architecture and design of the platform 

 
 

 

 
64 

8        <t id="t1_4" tag="D" lemma="mas" word="mas"/> 
9        <t id="t1_5" tag="N5-FS" lemma="ayuda" word="ayuda"/> 
10        <t id="t1_6" tag="P" lemma="a" word="a"/> 
11        <t id="t1_7" tag="N4666" lemma="Haiti" word="Haiti"/> 
12      </s> 
13    </p> 
14     <p id="p2" > 
15      <s id="s2"> 
16      <t id="t2_1" tag="AFS" lemma=" el">La</tok> 
17      <t id="t2_2" tag="N4666" lemma="Comisión">Comisión</tok> 
18      <t id="t2_3" tag="VDR3S-" lemma="pedir">pide</tok> 
19      <t id="t2_4" tag="EN--66" lemma="otro">otros</tok> 
20      <t id="t2_5" tag="X" lemma="90_millones">90_millones</tok> 
21      <t id="t2_6" tag="P" lemma="de">de</tok> 
22      <t id="t2_7" tag="N5-MP" lemma="euro">euros</tok> 
23      <t id="t2_8" tag="P" lemma="de">de</tok> 
24      <t id="t2_9" tag="AMP" lemma="el">los</tok> 
25      <t id="t2_10" tag="N5-MP" lemma="fondo">fondos</tok> 
26      <t id="t2_11" tag="P" lemma="de">de</tok> 
27      <t id="t2_12" tag="N5-FS" lemma="emergencia">emergencia</tok> 
28      <t id="t2_13" tag="JQ--MP" lemma="europeo">europeos</tok> 
29      <t id="t2_14" tag="SENT" lemma=".">.</tok> 
30   </s> 
31   </p> 
32   </body> 
33 </text> 

Another advantage for such an XML representation for tokens is that it would be easy to add a new piece 

of information to each token without worrying about where to insert this information. For example, 

partners could opt for providing both a tool/language-specific tag and a mapped tag mtag according to a 

standard like Parole
49

, as in the following example. 

1 <t id="t2_9" mtag="Tdmp-" tag="AMP" lemma="el">los</tok> 
2 <t id="t2_10" mtag="Ncmp-" tag="N5-MP" lemma="fondo">fondos</tok> 
3 <t id="t2_11" mtag="Sps" tag="P" lemma="de">de</tok> 
4 <t id="t2_12" mtag="Ncfs-" tag="N5-FS" lemma="emergencia">emergencia</tok> 
5 <t id="t2_13" mtag="A-pmp-" tag="JQ--MP" lemma="europeo">europeos</tok> 

6.1.3.3 Constituency and/or dependency parsing 

Operations by the NLP tools at this stage: 

 A constituency parser builds a phrase structure tree and/or 

 A dependency parser builds  a dependency tree. 

6.1.3.3.1 Phrase Structure Trees 

Assuming the XML representation discussed in 6.1.3.2.1 above, phrase structure trees can be represented 

as in the following example: 

1   <body> 
2     <p id="p1" > 
3       <s id="s1">   
4  <graph root="s1_500"> 
5    <terminals> 
6      <t id="s1_1" tag="AFS" lemma="el" word="La"/> 

                                                      

49
 For the Parole tagset, ee for example http://www.lsi.upc.es/~nlp/tools/parole-eng.html 



 

D3.1 Architecture and design of the platform 

 
 

 

 
65 

7      <t id="s1_2" tag="N4666" lemma="UE" word="UE"/> 
8      <t id="s1_3" tag="VDU3S-" lemma="enviar" word="enviará"/> 
9      <t id="s1_4" tag="D" lemma="mas" word="mas"/> 
10      <t id="s1_5" tag="N5-FS" lemma="ayuda" word="ayuda"/> 
11      <t id="s1_6" tag="P" lemma="a" word="a"/> 
12      <t id="s1_7" tag="N4666" lemma="Haiti" word="Haiti"/> 
13    </terminals> 
14    <non-terminals>  
15      <nt cat="S" id="s1_500"> 
16        <edge idref="s1_501" /> 
17        <edge idref="s1_502" /> 
18      </nt> 
19      <nt  cat="NP" id="s1_501"> 
20        <edge idref="s1_1" /> 
21        <edge idref="s1_2" /> 
22      </nt> 
23      <nt  cat="VP" id="s1_502"> 
24        <edge idref="s1_3" /> 
25        <edge idref="s1_503" /> 
26        <edge idref="s1_504" /> 
27      </nt> 
28      <nt  cat="NP" id="s1_503"> 
29        <edge idref="s1_4" /> 
30        <edge idref="s1_5" /> 
31      </nt> 
32      <nt  cat="PP" id="s1_504"> 
33        <edge idref="s1_6" /> 
34        <edge idref="s1_505" /> 
35      </nt> 
36      <nt  cat="NP" id="s1_505"> 
37        <edge idref="s1_7" /> 
38      </nt> 
39    </non-terminals> 
40  </graph> 
41       </s> 
42     </p> 
43   </body> 

In this representation
50

, 

 Each sentence element contains a graph element. 

 The graph element contains a terminals and a non-terminals element. 

 The terminals element contains one or more t elements that represent tokens as in 6.1.3.2.1 

above. 

 The non-terminals element contains one or more nt elements. 

 Each nt element has an id and a cat attribute. The value of the latter represents the constituent 

category depending on the output of the parser (typically S, NP, VP, etc.)   

                                                      

50
 This representation is based on the TIGER-XML format http://www.ims.uni-

stuttgart.de/projekte/TIGER/TIGERSearch/doc/html/TigerXML.html 



 

D3.1 Architecture and design of the platform 

 
 

 

 
66 

 The graph element has an attribute root whose value is the id of one of the nt elements 

(prototypically one nt of cat S).  

 Each nt element contains one or more edge elements. Each  edge element has an attribute 

idref that corresponds to terminal or non-terminal children nodes of the current nt. In the 

example above, the s1_502 VP  has a terminal child s1_3, and two non-terminals s1_503 

and s1_504, an NP and a PP, respectively. 

Notice that by using this format, it is easy to represent non-contiguous constituents, something that would 

not be straightforward if one decided to simply nest XML elements representing constituents.  

In order to use this representation for the output of a chunker, we can  generate a flat non-terminals 

section as in the following example: 

1   <body> 
2     <p id="p1" > 
3       <s id="s1">   
4  <graph root="s1_500"> 
5    <terminals> 
6      <t id="s1_1" tag="AFS" lemma="el" word="La"/> 
7      <t id="s1_2" tag="N4666" lemma="UE" word="UE"/> 
8      <t id="s1_3" tag="VDU3S-" lemma="enviar" word="enviará"/> 
9      <t id="s1_4" tag="D" lemma="mas" word="mas"/> 
10      <t id="s1_5" tag="N5-FS" lemma="ayuda" word="ayuda"/> 
11      <t id="s1_6" tag="P" lemma="a" word="a"/> 
12      <t id="s1_7" tag="N4666" lemma="Haiti" word="Haiti"/> 
13    </terminals> 
14    <non-terminals>  
15      <nt cat="S" id="s1_500"> 
16        <edge idref="s1_501" /> 
17        <edge idref="s1_502" /> 
18        <edge idref="s1_503" /> 
19        <edge idref="s1_504" /> 
20      </nt> 
21      <nt  cat="NP" id="s1_501"> 
22        <edge idref="s1_1" /> 
23        <edge idref="s1_2" /> 
24      </nt> 
25      <nt  cat="VP" id="s1_502"> 
26        <edge idref="s1_3" /> 
27      </nt> 
28      <nt  cat="NP" id="s1_503"> 
29        <edge idref="s1_4" /> 
30        <edge idref="s1_5" /> 
31      </nt> 
32      <nt  cat="PP" id="s1_504"> 
33        <edge idref="s1_6" /> 
34        <edge idref="s1_505" /> 
35      </nt> 
36      <nt  cat="NP" id="s1_505"> 
37        <edge idref="s1_7" /> 
38      </nt> 
39    </non-terminals> 
40  </graph> 
41       </s> 
42     </p> 
43   </body> 



 

D3.1 Architecture and design of the platform 

 
 

 

 
67 

In the above example, all but one non-recursive constituents (= chunks) are nested inside an artificially 

generated S element. Since the structure of these flat trees is the same with recursive trees generated by 

parsers, it can also accommodate nested chunks (NPs inside PPs as in the example above) in case a 

particular chunker produces them.  

6.1.3.3.2 Dependency trees 

Dependency trees can be represented at the token level in a format similar to the CoNLL data format
51

 as 

in the following example: 

1 <s id="s1">   
2      <!-- ....--> 
3   <t id="t1_2" tag="N4666" lemma="UE" word="UE"  
4      head="t1_3" depRel="Sb"/> 
5   <t id="t1_3" tag="VDU3S-" lemma="enviar" word="enviará" 
6      head="0" depRel="ROOT"/> 
7     <!-- ....--> 
8 </s> 

In the above example, to each t element we add  

 an attribute head. The value of this attribute is the id of the head token element, or 0. 

Depending on the output of the dependency parser, we may have more than one 0-valued tokens. 

 an attribute depRel. The value of this attribute is the dependency relation to the head token 

element. Depending on the output of the dependency parser, the depRel of  tokens with 0-

valued head attributes may be meaningful (i.e. Pred) or simply ROOT. 

In the above example, the dependency tree is headed by the verb enviará. The second token of the 

sentence (UE)  is a dependent node of enviará (t1_3) with a subject dependency relation (Sb). 

6.1.4 Alignment 

In this section, we propose an encoding for storing alignments between files annotated up to the level of 

syntax in two or more languages. The structure of this alignment file is based on the schema for 

alignment
52

 described in the latest (1.0.4) release of XCES. 

1 <?xml version="1.0"?> 
2 <cesAlign version="1.0"  xmlns="http://www.xces.org/schema/2003"> 
3   <cesHeader version="1.0"> 
4     <profileDesc> 
5       <translations> 
6         <translation trans.loc="news_20100514_haiti_en.tag.xml" 
7           wsd="UTF-8" n="1"/> 
8         <translation trans.loc="news_20100514_haiti_es.tag.xml" 
9           wsd="UTF-8" n="2"/> 
10       </translations> 
11     </profileDesc> 
12   </cesHeader> 
13   <linkList> 
14     <linkGrp domains="p1 p1" targType="s"> 
15       <link> 

                                                      

51
 http://nextens.uvt.nl/depparse-wiki/DataFormat 

52
 http://www.xces.org/schema/#align 



 

D3.1 Architecture and design of the platform 

 
 

 

 
68 

16         <align xlink:href="#s1"/> 
17         <align xlink:href="#s1"/> 
18       </link> 
19     </linkGrp> 
20     <linkGrp domains="p2 p2" targType="s"> 
21       <link> 
22         <align xlink:href="#xpointer(id('s3')/range-to(id('s4')))"/> 
23         <align xlink:href="#s2"/> 
24       </link> 
25     </linkGrp> 
26   </linkList> 
27 </cesAlign> 

As specified in XCES, this document contains a <cesHeader> element, followed by a <linkList> 

element. The <cesHeader> element can be stored infile or as a separate file. In both cases it may 

contain metadata information for the alignment process. It also contains links to the path where the 

aligned (linguistically annotated in the Panacea context) documents are stored. 

The <linkList> element contains one or more <linkGrp> elements considered to be a group. 

Groups of links apply to data within a particular text division, paragraph, etc. In the example above, we 

indicate this by creating <linkGrp> elements for each paragraph in the annotated files and storing the 

ids of paragraphs in the domains attribute of each <linkGrp>. The targType attribute of 

each <linkGrp> is used to indicate the type of links to be stored inside this element. In the case of the 

first two  <linkGrp> elements, the links refer to sentences. 

The <link> elements in the <linkGrp> elements contain the actual links. According to the XCES 

documentation “the order of the <align> elements within a <link> element is significant. Unless 

otherwise specified the order is assumed to match the ordering of <translation> elements in the 

header. If a different ordering is required the attribute n in the <translation> element and the 

attribute n in the <align> element can be used to explicitly link an <align> element with a specific 

translation.” 

The XLink locators in the <align> elements identify the aligned elements from the annotated files. As 

again specified in the XCES documentation “many-to-one alignments and many-to-many alignments can 

be represented by providing a range for the XPointer expression.” This is the case in the alignment 

between sentences 2 and 3 in the english, and sentence 2 in the spanish document (cf. input in section 

6.1.2 above). Notice that similar N-to-N alignments could also be produced for tokens, assuming that 

tokens are represented as XML elements, and not as tab-separated lines enclosed in an <s> element. 

In a similar fashion, to represent  alignments between chunks or phrases the xlink attributes in 

alignment files may refer to non-terminals from constituency parsers or chunkers (targType="nt"), 

and/or subtrees (targType="st") from  dependency trees as in the following artificial example: 

1     <linkGrp domains="p1 p1" targType="nt"> 
2       <link> 
3         <align xlink:href="#s1_504"/> 
4         <align xlink:href="#s1_506"/> 
5       </link> 
6     </linkGrp> 
7     <linkGrp domains="p1 p1" targType="st"> 
8       <link> 
9         <align xlink:href="#t1"/> 
10         <align xlink:href="#t3"/> 
11       </link> 



 

D3.1 Architecture and design of the platform 

 
 

 

 
69 

12     </linkGrp> 
13   </linkList> 
14 </cesAlign> 

In all the alignment examples, we assume an XML tool that parses the alignment files, visits relevant files 

and extracts necessary pieces of information (like, for example, all subtrees headed by the #t1 and #t3 

tokens above).  

6.1.5 Revision and distribution metadata 

Revisions to the files above can be documented via multiple <change> elements in a <revisionDesc> 

child element of the <cesHeader>. 

1 <?xml version="1.0"?> 
2 <cesDoc id="news_20100514_haiti_es" version="0.4"  

xmlns="http://www.xces.org/schema/2003"> 

3   <cesHeader version="0.4"> 
4     <fileDesc> 
5     <!-- As above --> 
6     </fileDesc> 
7     <profileDesc>  
8     <!-- As above --> 
9     </profileDesc> 
10   <revisionDesc> 
11   <!--Summarizes the revision history for a file.  --> 
12     <change> 
13       <changeDate>2012-05-20</changeDate> 
14       <respName>Panacea Partner</respName> 
15       <item>Corrected an error in the POS tags.</item> 
16     </change> 
17   </revisionDesc> 
18   </cesHeader> 
19 </cesDoc> 

Once the Panacea corpora are ready for distribution, information on rights and availability can be 

documented via a <publicationStmt> child element of the <cesHeader>. 

1 <?xml version="1.0"?> 
2 <cesDoc id="news_20100514_haiti_es" version="0.4"  

xmlns="http://www.xces.org/schema/2003"> 

3   <cesHeader version="0.4"> 
4     <fileDesc> 
5     <!-- . . .  --> 
6     <publicationStmt>    
7       <distributor>Panacea project</distributor> 
8       <eAddress>http://www.panacea-lr.eu</eAddress> 
9       <availability>Free for research purposes or ...</availability> 
10       <pubDate>2013-05-20</pubDate> 
11     </publicationStmt> 
12     <!-- . . .  --> 
13     </fileDesc> 
14     <!-- Rest as above --> 
15   </cesHeader> 
16 </cesDoc> 

6.2 Common interfaces design 
The following proposal creates a division between the parameters that are used by most implementations 

of a concrete operation (Main parameters) and those parameters which are only used by a specific im-

plementation (Optional parameters).  



 

D3.1 Architecture and design of the platform 

 
 

 

 
70 

We start defining a POStagger operation with the corresponding input/output messages. Assuming we 

take the wrapped document style, the POStaggerRequest message has only one part. All implementation 

parameters will be represented in that part by means of the associated type POStaggerParams: 

Figure 7: POStagger operation & message in WSDL 

<operation name="POStagger"> 

        <input message="POStaggerRequest"/> 

        <output message=" POStaggerResponse "/> 

 </operation> 

<message name=" POStaggerRequest "> 

    <part  name=" POStaggerParams"  

              element="types:POStaggerParams"/> 

</message> 

In Figure 8 we give a sketch version of the type declarations from Figure 7. The element POStaggerPar-

ams is defined as belonging to the ParamsType. ParamsType is a complex type consisting of two kinds of 

elements: the mainParams and optParams. The mainParams refer to objects that typically move around 

in NLP services either as inputs or as outputs. The optParams refer to what we call „application parame-

ters‟, which are typically used as configuration parameters. mainParameters are expected to be common 

enough so as to be typed using some general type system. optParams are optional (they are assigned 

some default value) and  may lack a general type. 

Figure 8: preliminary type descriptions 

<xs:element  name=" POStaggerParams " type=”ParamsType”/> 

<xs:complexType name=”ParamsType”> 

    <xs:sequence> 

        <xs:element ref="mainParams"  /> 

        <xs:element ref="optParams" /> 

    </xs:sequence> 

</xs:complexType> 

In our PoS tagger example, mainParams include text and language. Both types are expected to be general 

and therefore collected in the general model. Language will obviously be declared in terms of ISOcat. 

Text type is a bit more complex as here we can further specify mimetypes, encoding formats etc. Func-

tional parameters are collapsed into the optParams. 

The corresponding XML payload for the POStaggerParams type in Figure 8 goes as follows: 

Figure 9: XML payload for PoS tagger 

< POStaggerParams> 

      < mainParams> 

          <language>some language</language> 

          <text>some input text to be tagged</text> 

      </mainParams> 

      <optParams>optional params</optParams> 

< /POStaggerParams> 

Defining a CI for a tool following this proposal means defining a Type for mainParams and a type for the 

response. We have defined CI for a couple of tools: POSTagger and Tokenizer:  

  - The POSTagger CI is described in Figure 15: POSTaggerParams and Figure 16: POSTaggerResponse 

(section 9.2.3 Common Interfaces proposal). 

 MainParams:  

  - language (language code ISO) 



 

D3.1 Architecture and design of the platform 

 
 

 

 
71 

  - text (text is a complex type that can be a string or a URL) 

 Response: 

  - text (text is a complex type that can be a string or a URL) 

  

  - The Tokenizer CI is described in Figure 17: TokenizerParams and Figure 18: TokenizerResponse (sec-

tion 9.2.3 Common Interfaces proposal). 

 MainParams:  

  - language (language code ISO) 

  - text (text is a complex type that can be a string or a URL) 

 Response: 

  - text (text is a complex type that can be a string or a URL) 

Following this analysis and with all data gathered from all partners a first proposal of design for the CI 

has been developed. For every operation or functionality a CI has been designed and can be found in the 

appendix 9.2.7 Common interfaces design. 

6.3 PANACEA Platform technologies 
Different technologies have been surveyed in this deliverable regarding some specific functionalities or 

components necessary for the PANACEA platform. Some of these technologies are more compatible than 

others or are designed to work together. 

The following section aims to group these technologies creating a few technological options to deploy the 

platform. After choosing one of these options future researches to be done on those technologies are de-

scribed and some alternatives are proposed. 

6.3.1 Options 

6.3.1.1 Option 1: MyGrid environment 

The first option is based on using some of myGrid tools and is described in Figure 10.   



 

D3.1 Architecture and design of the platform 

 
 

 

 
72 

Figure 10: myGrid environment 

 

In these option web services are developed using Soaplab2 or SOAP(Axis). It is possible that in the near 

future REST can be used too. By using this option the service provider is given two options to develop its 

web services: using Axis technology based on SOAP or Soaplab2. 

Axis gives the service provider full control of the development since all the needed code has to be done 

from scratch. Service provider needs programming skills and needs to solve all web service topics him-

self, for example, temporary files, timeouts, etc. 

Soaplab2 service provider needs no programming skills since all code is already developed. The service 

provider only needs to describe its web service and tool using Soaplab metadata and most web service 

issues are solved. For example, timeouts need only to be configured. On the other hand, the service pro-

vider has less configuration capabilities than developing the code himself. 

We can say Soaplab is a low cost and fast solution for service providers with standard requirements and 

few resources or programming skills. For those service providers who have requirements not fulfilled by 

Soaplab the solution is Axis. 

The myGrid workflow editor is Taverna. Latest release is version 2 which is compatible with Axis web 

services and Soaplab2 web services using the typed interface. The plug-in for Soaplab2 is still only avail-

able for Taverna 1.7 but the new plug-in is supposed to be finished in a few months. 

Although it‟s not technologically necessary to use the same registry being used in myGrid, using Bio-

Catalgue has some advantages: The web 2.0 interfaces and the usability are carefully designed; the inte-

gration with Taverna is guaranteed for Taverna 2.0 thanks to a plug-in. Taverna users can access Biocata-

logue within the Taverna workbench.  

To summarize it can be said that the myGrid approach is a low cost and user friendly solution with a 

small learning curve for both, developers and users. Its tools have carefully designed interfaces for a nice 

user experience and are based on robust software but with a few functional limitations compared to other 

grid solutions like huge data handling and security. However, myGird developers are adding new features 

and improvements often thus massive data and security topics can be addressed.   



 

D3.1 Architecture and design of the platform 

 
 

 

 
73 

6.3.1.2 Option 2: Large scale Grids 

Different grid architectures have been surveyed: Globus, EGEE, NorduGrid, etc. Some of these solutions 

are modular and have very different levels of compatibility between them. They can be viewed as indi-

vidual options for PANACEA. 

Globus and EGEE are very similar solutions based and designed for large amounts of data and machine 

resources. They have some operating system compatibility limitations and have a high cost to be installed 

and to be maintained. Usually, these kinds of architecture require specific resource and people to be as-

signed to each module. 

On the other hand, NorduGrid consortium claims to have developed highly compatible middleware soft-

ware and a low cost installation and maintenance grid architecture compared to the rest of grids. From 

this point of view, NorduGrid could be an interesting solution for PANACEA using a whole grid middle-

ware to deploy the platform. 

6.3.1.3 Option 3: Fallback position: UIMA / GATE 

Frameworks can represent the fallback position for PANACEA in case the other technological options 

fail. Frameworks have been used for years despite their limited functionalities compared to what other 

studied technologies can provide. However, newer versions of these frameworks are adding new and in-

teresting capabilities. It must be said that this frameworks are, in some cases, specially designed for NLP 

work giving them some really suitable and well designed features. 

6.3.2 Primary option, future research and alternatives 

To begin PANACEA development one technological option must be chosen. There are several considera-

tions that must be taken into account: the functionalities or features provided by each solution, the usabil-

ity and learning curve for developers and users, the developers and promoters future plans, the documen-

tation, the resources for PANACEA development, etc. 

Option 1 (myGrid environment) offers a mature technology that has proven to be successful for many 

different research fields and that has a lot of support and future plans. All the tools have good documenta-

tion, nice graphical interfaces and small learning curve. 

Massive data handling has recently been improved for some of the tools and further work is expected. 

There is a similar situation for security topics: no security features were developed for these tools but 

some new features are being added and developed for the new releases. 

There are several software updates per year and some tools can be integrated and used altogether.  

Table 25: Option 1. Mygrid environment. Pros and Cons. 

Pros  Cons   



 

D3.1 Architecture and design of the platform 

 
 

 

 
74 

-  Mature technology (lots of success histories). 

-  Most tools have support. 

-  Tools have nice GUI. 

-  Small learning curve. 

-  Tools are free and open source. 

-  Massive data (further analysis). 

-  Nice semantic model (ontology). 

-  WS oriented.  

- No security tools yet.  

Option 2 (Large scale Grids) is a very robust technological approach that can fulfil many of PANACEA 

requirements but with a high cost in development and maintenance. Tool interfaces are not as user 

friendly as in option 1 and the learning curve is much larger. 

Table 26: Option 2. Large scale Grids. Pros and Cons. 

Pros  Cons   

-  Mature technology (lots of success his-

tories). 

-  All tools have support. 

- Tools are free and open source. 

-  Massive data. 

-  Security with proxy certificates. 

-  WS oriented. 

-  Most tools have only command line in-

terfaces.  

-  Very complex. 

-  Linux only. 

-  Large learning curve. 

-  No workflow editor (has a job monitor). 

In the technical meeting in Athens (April 2010) it was agreed that option 1 (myGrid environment) 

would be the PANACEA primary option for the platform development. The small learning curve and 

low cost development compared to the option 2 were key aspects for the decision. 

However, it was agreed to keep on surveying the other options in case there was a problem or in case 

some tools from other technologies could be used together with the ones in option 1. For example, some 

security tools or data transfer tools. 

From the option 2 survey it can be concluded that grid architectures like Globus or EGEE have a too high 

cost and compatibility issues (scientific linux only) to be used in PANACEA. On the other hand, Nor-

duGrid could be an interesting option for surveying the grid features and tools to be used in combination 

with option 1 or to be used in case option 1 has a critical problem. 



 

D3.1 Architecture and design of the platform 

 
 

 

 
75 

Keeping in mind that some partners have UIMA know-how the PANACEA fallback strategy would be to 

use UIMA framework to wrap the tools and execute them remotely. 

7 Workplan 

7.1 To-do list 

7.1.1 Travelling Object 

TO-GR-01: Define/choose simple TO  

- Design of the first version of the travelling object (simple TO). 

- Inline annotation. 

TO-GR-02: Conversion tools (simple TO) 

- Develop scripts or tools to convert in-house formats to TO format (simple TO). 

TO-GR-03: Define/choose complex TO  

- Design of a second version of the travelling object (complex TO). 

- Stand-off annotation? 

- New features and improvements. 

TO-GR-04: Conversion tools (complex TO)  

- Develop scripts or tools to convert in-house format to complex format. 

7.1.2 Web Services 

7.1.2.1 General 

WS-GR-01: Temporary files management. 

- Detailed design and test. 

WS-GR-02: Provenance. 

- Detailed design and test. 

WS-GR-03: Security. 

- Detailed design and test. 

7.1.2.2 Common Interfaces 

WS-CI-01: Define operations Common Interface. 

- Define input / output parameters commonly used by every kind of tool. 

- Improve or change the Common interface if necessary in every version of the platform. 

WS-CI-02: Controlled Vocabularies. 



 

D3.1 Architecture and design of the platform 

 
 

 

 
76 

- Establish a first version of the closed vocabularies suitable for PANACEA WS, to define opera-

tions, inputs, outputs, parameters, etc. 

- Standardization: make PANACEA vocabularies ISOCAT compliant. 

- Maintenance: make changes and improvements in every following version of the platform. 

7.1.2.3 Soaplab 

WS-SL-01: Soaplab Test massive data: 

- Large data support. 

- Multiple files support. 

- Multiple files stand-off. 

- Improvements or alternatives. 

WS-SL-02: Soaplab Test Common Interface capabilities: 

- Verify Typed interface feature. 

- Verify that Soaplab typed interface can fulfil PANACEA Common Interface. 

- Design and develop any software needed to guarantee interoperability. 

WS-SL-03: Soaplab security 

- Check if there are plans for security development. Soaplab developers willing to help? 

- Develop security features (if needed) 

WS-SL-04: Soaplab operating system 

- Windows Test:  

o Test if Soaplab can be installed and WS can be generated (probably not). 

o Deployment test: Soaplab WS web files (.war) should be deployed without problems in 

Windows. 

WS-SL-05: Soaplab temporary files and provenance 

- Verify the temporary files management (test, analysis, improvement) 

- provenance management (test, analysis, improvement) 

WS-SL-06: Soaplab test and deploy new versions 

- Test and deploy new versions of the Soaplab software. 

- Deploy new or improved web services using Soaplab with newer versions. 

7.1.2.4 AXIS 

WS-AX-01: Axis Temporary files management development. 



 

D3.1 Architecture and design of the platform 

 
 

 

 
77 

WS-AX-02: Axis Provenance support development. 

WS-AX-03: Axis Massive data support development. 

WS-AX-04: Axis Multiple files support development. 

WS-AX-05: Axis Multiple files stand-off support development. 

WS-AX-06: Axis Async. execution management development. 

7.1.2.5 Alternatives 

WS-AL-01: Survey on REST and others. 

WS-AL-02: Security: SAML survey. 

WS-AL-03: Security: certificates survey. 

7.1.3 Workflow editor and engine 

7.1.3.1 Workflow Editor 

WF-TV-01: Taverna versions test. 

- Test and use of versions  1.7 and 2 of Taverna. Problems and solutions. 

WF-TV-02: Taverna Server test. 

- Test  the server version. Async. remote execution for massive data and long lasting workflows. 

- Usability test of server version.  Can it be used from a portal? (myExpermient?) 

WF-TV-03: Taverna Server integration. 

- Remote execution for long lasting workflows and massive data. 

WF-TV-04: Taverna Server web integration. 

- Usability improvement by web integration / myExperiment. 

7.1.4 Registry 

7.1.4.1 General 

RG-GR-01: Temporary registry development. 

- MyBioCatalogue software expected for third quarter 2010 Jul-Sep. Is a temporary registry neces-

sary? 

- Develop a temporary registry if needed. A simple web site to list services and collect some meta-

data. 

RG-GR-02: Registry metadata design. 

- What metadata for each WS, user, workflow etc. need to be stored? 

- Will workflows be posted and shared in the registry or in a specific portal like myExperiment?. 



 

D3.1 Architecture and design of the platform 

 
 

 

 
78 

7.1.4.2 MyBioCatalogue > PanaceaCatalogue 

BC-GR-01: MyBioCatalogue deployment test. 

- Software expected for third quarter 2010 Jul-Sep. 

- Verify that MyBioCatalogue can fulfil PANACEA requirements. 

BC-GR-02: MyBioCatalogue modification, improvement and test. 

- Make changes to suit Panacea requirements: 

o Adding extra metadata 

o Helping user to correctly annotate the services with closed vocabularies 

BC-GR-03: PanaceaCatalogue deployment. 

7.1.5 Portal 

ME-GR-01: Analyze myExperiment or other portal features. 

- Share information, workflows, executes workflows online, etc. 

- Download and test myExperiment / portal. 

- Decide whether or not to use a portal?  

ME-GR-02: myExperiment/portal improvement. 

- Modification and improvement: make changes to suit Panacea requirements. 

ME-GR-03: PanaceaPortal deployment. 

7.1.6 Tools 

7.1.6.1 Work Package 4 tools 

TL-W4-01: WP4 CAA prototype integration. 

- Develop / deploy tools for the formats conversion between proprietary formats and the TO. 

- Deploy the tools. 

- Test the tools integration.  

TL-W4-02: WP4 CAA integration. 

- Develop / deploy tools for the formats conversion between proprietary formats and the TO. 

- Deploy the tools. 

- Test the tools integration.  

TL-W4-03: WP4 PoS modules integration. 

- Develop / deploy tools for the formats conversion between proprietary formats and the TO. 

- Deploy the tools. 



 

D3.1 Architecture and design of the platform 

 
 

 

 
79 

- Test the tools integration. 

7.1.6.2 Work Package 5 tools 

TL-W5-01: WP5 aligners. 

- Develop / deploy tools for the formats conversion between proprietary formats and the TO. 

- Deploy the tools. 

- Test the tools integration.  

 

TL-W5-02: WP5 Bilingual Dictionary Extractor integration. 

- Develop / deploy tools for the formats conversion between proprietary formats and the TO. 

- Deploy the tools. 

- Test the tools integration.  

TL-W5-03: WP5 Transfer Grammar Extractor. 

- Develop / deploy tools for the formats conversion between proprietary formats and the TO. 

- Deploy the tools. 

- Test the tools integration.  

7.1.6.3 Work Package 6 tools 

TL-W6-01: WP6 Lexical Acquisition components integration. 

- Develop / deploy tools for the formats conversion between proprietary formats and the TO. 

- Deploy the tools. 

- Test the tools integration.  

7.1.6.4 Travelling object improvements 

TL-TO-01: Format converters to newer TO. 

- Develop / deploy /improve tools for the formats conversion between proprietary formats and 

newer versions of the TO. 

7.1.7 Other technologies and alternatives. Fallback strategies. 

7.1.7.1 Surveys 

AL-SV-01: Grid survey. 

- NorduGrid or other grid technology alternative to be analyzed. 

- Verify if it could fulfil the PANACEA requirements. 

AL-SV-02: UIMA / GATE continuous state of the art analysis. 

- UIMA and GATE frameworks can be an alternative for PANACEA platform.  



 

D3.1 Architecture and design of the platform 

 
 

 

 
80 

7.1.7.2 Tests 

AL-TS-01: Grid test. 

- Is NorduGrid (or other grid) a feasible option? 

- Test deployment. Verify that it can fulfil all the requirements. 

AL-TS-02: Test UIMA / GATE. 

- Verify if UIMA and / or GATE could fulfil the PANACEA requirements. 

- Choose one option 

7.1.7.3 Workplan changes 

AL-WP-01: Change workplan. 

- Change tasks according to partners‟ decisions. 

- Adapt / change workplan according to the chosen technologies. 

7.2 Workplan table 
- „X‟ means a task must be executed / developed. 

- „<>‟ means a task has been done in a previous version and its results should still be operative. 

- „*‟ means a task must be executed if necessary. 

Table 27 

Category Task 1
st
 Ver-

sion (t14) 

2
nd

 Ver-

sion (t22) 

3
rd

 Ver-

sion (t30) 

Travelling Object TO-GR-01: Define/choose simple TO  X <>  

TO-GR-02: Conversion tools (simple TO) X <>  

TO-GR-03: Define/choose complex TO  X X <> 

TO-GR-04: Conversion tools (complex TO)  X <> 

Web Services WS-GR-01: Temporary files management X <> <> 

WS-GR-02: Provenance X <> <> 

WS-GR-03: Security   X 

Common Inter-

faces 

WS-CI-01: Define operations Common Interface X <> <> 

WS-CI-02: Controlled Vocabularies  X <> 

Soaplab WS-SL-01: Soaplab Test massive data X   

WS-SL-02: Soaplab Test Common Interface capabili-

ties 

X   

WS-SL-03: Soaplab security   X 



 

D3.1 Architecture and design of the platform 

 
 

 

 
81 

WS-SL-04: Soaplab operating system X   

WS-SL-05: Soaplab temporary files and provenance X <> <> 

WS-SL-06: Soaplab test and deploy new versions X <> <> 

Axis WS-AX-01: Axis Temporary files management de-

velopment 

X <> <> 

WS-AX-02: Axis Provenance support development X <> <> 

WS-AX-03: Axis Massive data support development  X <> 

WS-AX-04: Axis Multiple files support development  X <> 

WS-AX-05: Axis Multiple files stand-off support 

development 

 X <> 

WS-AX-06: Axis Async. execution management 

development 

 X <> 

Web services al-

ternatives 

WS-AL-01: Survey on REST and others  X <> 

WS-AL-02: Security: SAML survey  X  

WS-AL-03: Security: certificates survey  X  

Workflow editor WF-TV-01: Taverna versions test X <> <> 

WF-TV-02: Taverna Server test X <> <> 

WF-TV-03: Taverna Server integration  X <> 

WF-TV-04: Taverna Server web integration   X 

Registry RG-GR-01: Temporary registry development X   

RG-GR-02: Registry metadata design X <> <> 

Biocatalogue BC-GR-01: MyBioCatalogue deployment test  X  

BC-GR-02: MyBioCatalogue modification, im-

provement and test 

 X <> 

BC-GR-03: PanaceaCatalogue deployment   X 

Portal ME-GR-01: Analyze myExperiment or other portal 

features 

 X  

ME-GR-02: myExperiment/portal improvement   X 

ME-GR-03: PanaceaPortal deployment   X 

Work package 4 

tools 

TL-W4-01: WP4 CAA prototype integration X   

TL-W4-02: WP4 CAA integration  X <> 



 

D3.1 Architecture and design of the platform 

 
 

 

 
82 

TL-W4-03: WP4 PoS modules integration   X 

Work package 5 

tools 

TL-W5-01: WP5 aligners X <> <> 

TL-W5-02: WP5 Bilingual Dictionary Extractor 

integration 

  X 

TL-W5-03: WP5 Transfer Grammar Extractor   X 

Work package 6 

tools 

TL-W6-01: WP6 Lexical Acquisition components 

integration 

  X 

Travelling Object 

improvements 

TL-TO-01: Format converters to newer TO  X <> 

Alternatives sur-

veys 

AL-SV-01: Grid survey X <> <> 

AL-SV-02: UIMA / GATE continuous state of the art 

analysis 

X <> <> 

Alternatives tests AL-TS-01: Grid test  X  

 AL-TS-02: Test UIMA / GATE  *  

Workplan 

changes 

AL-WP-01: Change workplan * * * 

7.2.1 Resources 

Expressed in person-month. 

Table 28 

 UPF ILC ILSP LG DCU ELDA 

TO-GR-01-04 1 1,5 1 1 1  

WS-GR-01-03  3     

WS-CI-01-02 2      

WS-SL-01-03 1,5      

WS-SL-04    1   

WS-SL-05-06  2     

WS-AX-01-06  1,5  6   

WS-AL-01-03  2     

WF-TV-01-03 3      

WF-TV-04      1 

RG-GR-01-02 1     1 



 

D3.1 Architecture and design of the platform 

 
 

 

 
83 

BC-GR-01-02 2     4 

BC-GR-03  1    3 

ME-GR-01-03  1    5 

TL-W4-01-02   2    

TL-W4-03  1  1   

TL-W5-01-02     3  

TL-W5-03    1   

TL-W6-01 1 1     

Tl-TO-01 1 1 1 1 1  

AL-SV-01 1      

AL-SV-02   0,5    

AL-TS-01 1,5      

AL-TS-02   0,5    

TOTAL 15 15 5 11 5 14 

8 Bibliography 
[ARC Nordugrid] M. Ellert, M. Gronager, A. Konstantinov, B. Konya, J. Lindemann, I. Livenson, J.L. Nielsen, M. 

Niinimaki, O. Smirnova, A. Waananen, Advanced Resource Connector middleware for lightweight computational 

Grids, Future Generation Computer Systems, Volume 23, Issue 2, February 2007, Pages 219-240, ISSN 0167-739X, 

DOI: 10.1016/j.future.2006.05.008. 

[Berners-Lee 2005] Berners-Lee, T, et al., "Uniform Resource Identifier (URI): Generic Syntax", IETF RFC 

3986,January 2005, http://tools.ietf.org/rfc/rfc3986.txt 

[Biocatalogue] K. Belhajjame, C. Goble, F. Tanoh, J. Bhagat, K. Wolstencroft, R. Stevens, E. Nzuobontane, H. 

McWilliam, T. Laurent, and R. Lopez, "BioCatalogue: A Curated Web Service Registry for the Life Science Com-

munity," in Microsoft eScience conference, 2008. 

[Brown 2004] Brown, A. and Haas, H. (2004). Web Services Glossary. W3C working group note. 

http://www.w3.org/TR/ws-gloss/ 

[CiTER] Citation of Electronic Resources, ISO Draft (2008) 

[Feta] P. Lord, P. Alper, C. Wroe, and C. Goble, "Feta: A Light-Weight Architecture for User Oriented Semantic 

Service Discovery," in European Semantic Web Conference, 2005, pp. 17-31. 

[gLite] Newhouse, S. 2009. The EGEE Distributed Computing Infrastructure. Connexions, September 21, 2009. 

http://cnx.org/content/m32047/1.1/. 

[Globus] Globus Toolkit Version 4: Software for Service-Oriented Systems. I. Foster. IFIP International Conference 

on Network and Parallel Computing, Springer-Verlag LNCS 3779, pp 2-13, 2005. 

http://tools.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/ws-gloss/
http://cnx.org/content/m32047/1.1/
http://www.globus.org/alliance/publications/papers.php#gt4overview


 

D3.1 Architecture and design of the platform 

 
 

 

 
84 

[Globus] The Anatomy of the Grid: Enabling Scalable Virtual Organizations. I. Foster, C. Kesselman, S. Tuecke. 

International J. Supercomputer Applications, 15(3), 2001. 

[Guenther 2004] Rebecca Guenther (Library of Congress), “PREMIS - Preservation Metadata Implementation 

Strategies Update 2: Core Elements for Metadata to Support Digital Preservation” RLG DigiNews: December 2004 

http://www.rlg.org/en/page.php?Page_ID=20492#article2 

[KYOTO] Eneko Agirre, Xabier Artola, Arantza Diaz de Ilarraza, German Rigau, Aitor Soroa, and Wauter Bosma. 

2009. KAF: Kyoto Annotation Framework. Technical Report TR 1-2009, Dept. Computer Science and Artificial 

Intelligence, University of the Basque Country.  

[KYOTO] K. Lee, J. Pustejovsky, H. Bunt, B. Boguraev, and N. Ide. Language resource management - Semantic 

annotation framework (SemAF) - Part 1 :Time and events. International Organization for Standardization, Geneva, 

Switzerland, 2007. http://lirics.loria.fr/doc pub/SemAFCD24617-1Rev12.pdf.  

[KYOTO] Lionel Clément and Eric Villemonte de la Clergerie. Maf: a morphosyntactic annotation framework. In 

Proceedings of the 2nd Language & Technology Conference, page 90–94, April 2005.  

[KYOTO] Nancy Ide and Laurent Romary (2004). International standard for a linguistic annotation framework. 

Natural Language Engineering, 10 , pp 211-225, doi:10.1017/S135132490400350X  

[KYOTO] Thierry Declerck. Synaf: Towards a standard for syntactic annotation. In Nicoletta Calzolari, Khalid 

Choukri, Aldo Gangemi, Bente Maegaard, Joseph Mariani, Jan Odijk, and Daniel Tapias, editors, Proceedings of the 

Fifth Conference on International Language Resources and Evaluation, pages 229–233. European Language Re-

sources Association (ELRA), May 2006.  

[LoonyBin] J. Clark, A. Lavie, "LoonyBin: Keeping Language Technologists Sane through Automated Management 

of Experimental (Hyper)Workflows", LREC 2010. Malta. [PDF]  

[LoonyBin] J. Clark, J. Weese, B. Ahn, A. Zollmann, Q. Gao, K. Heafield, A. Lavie, "The Machine Translation 

Toolpack for LoonyBin: Automated Management of Experimental Machine Translation HyperWorkflows", Prague 

Bulletin of Mathematical Linguistics (Presented at the Fourth Machine Translation Marathon) January 2010. Dub-

lin, Ireland [PDF] [MT Lunch Slides] [MT Marathon Slides] 

[Mackenzie 2006] MacKenzie C.M., Laskey K., McCabe F., Brown P.F., Metz R., Hamilton B.A. OASIS Reference 
Model for Service Oriented Architecture 1.0, August 2006, http://www.oasis-
open.org/committees/download.php/19679/soa-rm-cs.pdf 

[myExperiment] D. De Roure, C. Goble, and R. Stevens, "The Design and Realisation of the myExperiment Virtual 

Research Environment for Social Sharing of Workflows," Future Generation Computer Systems, vol. 25, pp. 561-

567, 2008. 

[Soaplab] M. Senger, P. Riceand  T. Oinn. "Soaplab - a unified Sesame door to analysis tools (2003)" In UK e-

Science All Hands Meeting. 

[Stanica 2006] Stanica M., Wiberg T., Wierenga K., Winter S., Rauschenbach J.,JRA5 Glossary of Terms - Second 

Edition- update of DJ5.1.1 

[Taverna] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn, "Taverna: a tool for build-

ing and running workflows of services.," Nucleic Acids Research, vol. 34, iss. Web Server issue, pp. 729-732, 2006. 

[Taverna] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover, C. Goble, A. Goderis, D. Hull, D. 

Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe, "Taverna: lessons in creating a 

workflow environment for the life sciences," Concurrency and Computation: Practice and Experience, vol. 18, iss. 

10, pp. 1067-1100, 2006. 

http://www.globus.org/alliance/publications/papers.php#anatomy
http://www.rlg.org/en/page.php?Page_ID=20492#article2
http://www.cs.cmu.edu/~alavie/
http://www.cs.cmu.edu/~jhclark/pubs/loonybin.pdf
http://www.cs.jhu.edu/~bahn/
http://www.cs.cmu.edu/~zollmann/
http://geek.kyloo.net/
http://kheafield.com/professional/
http://www.cs.cmu.edu/~alavie/
http://www.cs.cmu.edu/~jhclark/pubs/loonybin_mt_toolpack.pdf
http://www.cs.cmu.edu/~jhclark/pubs/mt_lunch_2010_01_18.pdf
http://www.cs.cmu.edu/~jhclark/pubs/mt_marathon_2010_01_26.pdf
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf


 

D3.1 Architecture and design of the platform 

 
 

 

 
85 

[U-compare] Kano, Yoshinobu, William A. Baumgartner Jr., Luke McCrohon, Sophia Ananiadou, K. Bretonnel 

Cohen, Lawrence Hunter and Jun'ichi Tsujii U-Compare: share and compare text mining tools with UIMA. Bioin-

formatics. 25(15), pp. 1997-1998, 2009; doi: 10.1093/bioinformatics/btp289  

[U-compare] Kano, Yoshinobu, William A. Baumgartner Jr., Luke McCrohon, Sophia Ananiadou, K. Bretonnel 

Cohen, Lawrence Hunter and Jun'ichi Tsujii U-Compare: share and compare text mining tools with UIMA. Bioin-

formatics. 25(15), pp. 1997-1998, 2009;; doi: 10.1093/bioinformatics/btp289  

[Wulong 2001] Wulong T., 2001, http://searchcio.techtarget.com/sDefinition/0,,sid182_gci213384,00.html 

9 Appendix 

9.1 Appendix A 

9.1.1 Current state of the art analysis schema 

Analysis of main characteristics 

Functionalities: what they do. 

Integration: how easy will be to use it in our scenario: versions, operating systems, ... 

Maturity: history of the supplier and of the product to see reliability. 

Support and plans for the future: is there documentation or information about future evolutions of the 

product. 

Availability: is it free, open source, ... etc. 

Table 29 

 Functional-

ities 

Cost / 

learning 

curve 

Integrability maturity Support and 

plans for the 

future 

Availability  

Tool A  
 

    

Tool B  
 

    

Technol-

ogy A 
 

 
    

Frame-

work A 
 

 
    

Wrapper 

A 
 

 
    

 

 

http://searchcio.techtarget.com/sDefinition/0,,sid182_gci213384,00.html


 

D3.1 Architecture and design of the platform 

 
 

 

 
86 

9.2 Appendix B 

9.2.1 Emboss Groups 

Table 30: Emboss groups table 

Top Level Second Level Description 

Acd   ACD file utilities 

Alignment Consensus Merging sequences to make a consensus 

  Differences Finding differences between sequences 

  Dot_plots Dot plot sequence comparisons 

  Global Global sequence alignment 

  Local Local sequence alignment 

  Multiple Multiple sequence alignment 

Assembly Fragment_assembly DNA sequence assembly 

Display   Publication-quality display 

Edit   Sequence editing 

Enzyme_Kinetics   Enzyme kinetics calculations 

Feature_tables   Manipulation and display of sequence annotation 

HMM   Hidden Markov Model analysis 

Information   Information and general help for users 

Menus   Menu interface(s) 

Nucleic 2D_structure Nucleic acid secondary structure 

  Codon_usage Codon usage analysis 

  Composition Composition of nucleotide sequences 

  CpG_islands CpG island detection and analysis 

  Gene_finding Predictions of genes and other genomic features 

  Motifs Nucleic acid motif searches 

  Mutation Nucleic acid sequence mutation 

  Profiles Nucleic acid profile generation and searching 

  Primers Primer prediction 

  Repeats Nucleic acid repeat detection 

  RNA_folding RNA folding methods and analysis 

  Restriction Restriction enzyme sites in nucleotide sequences 

  Transcription Transcription factors, promoters and terminator prediction 

  Translation Translation of nucleotide sequence to protein sequence 

Phylogeny Consensus Phylogenetic consensus methods 

  Continuous_characters Phylogenetic continuous character methods 

  Discrete_characters Phylogenetic discrete character methods 

  Distance_matrix Phylogenetic distance matrix methods 

  Gene_frequencies Phylogenetic gene frequency methods 

  Molecular_sequence Phylogenetic tree drawing methods 

  Tree_drawing Phylogenetic molecular sequence methods 

  Misc Phylogenetic other tools 

Protein 2D_structure Protein secondary structure 



 

D3.1 Architecture and design of the platform 

 
 

 

 
87 

  3D_structure Protein tertiary structure 

  Composition Composition of protein sequences 

  Motifs Protein motif searches 

  Mutation Protein sequence mutation 

  Profiles Protein profile generation and searching 

Test   Testing tools, not for general use. 

Utils Database_creation Database installation 

  Database_indexing Database indexing 

  Misc Utility tools 

 

9.2.2 Soaplab test 

Figure 11: splitter WS 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
88 

Figure 12: Freeling WS 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
89 

Figure 13: Test workflow 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 

Figure 14: detailed test workflow 

 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 

 

9.2.3 Common Interfaces proposal



 

D3.1 Architecture and design of the platform 

 
 

 

 

Figure 15: POSTaggerParams 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 

 

Figure 16: POSTaggerResponse 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 

Figure 17: TokenizerParams 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 

Figure 18: TokenizerResponse 

 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 

9.2.4 Semantic Service Description (myGrid way) 

Figure 19: WSDL / Semantic service description 

WSDL Semantic Service Description (“a la MyGrid”) 



 

D3.1 Architecture and design of the platform 

 
 

 

 

<wsdl:message name="PoStaggerRequest"> 

        <wsdl:part name="POStaggerParams" element="POStaggerParams"/> 

</wsdl:message> 

     

    <wsdl:message name="PoStaggerResponse"> 

        <wsdl:part name="PoStaggerResponse" element="CoocurrenceArray"/> 

</wsdl:message> 

     

<wsdl:portType name="FreelingWebService"> 

        <wsdl:operation name="POStagger"> 

            <wsdl:input message="POStaggerRequest"/> 

            <wsdl:output message=" POStaggerResponse "/> 

        </wsdl:operation> 

</wsdl:portType> 

<xs:complexType name="POSTaggerParamsType"> 

        <xs:complexContent> 

            <xs:restriction base="ParamsType"> 

                <xs:sequence> 

                    <xs:element name="MainParams" 

type="POSTaggerMainParamsType" minOccurs="0" 

                        maxOccurs="1"/> 

                    <xs:element name="optParams"/> 

                </xs:sequence> 

            </xs:restriction> 

        </xs:complexContent> 

    </xs:complexType> 

<xs:complexType name="POSTaggerMainParamsType"> 

        <xs:sequence> 

            <xs:element name="language" type="LanguageISO639-iso-639.."/> 

            <xs:element name="text" type="TextType"/> 

        </xs:sequence> 

  <serviceOperation> 

      <operationName>POStagger</operationName> 

      <portName>PosTagger</portName> 

      <operationDescriptionText>Some description </operationDescriptionText> 

      <operationTask>http://ontology/#PoStagger</operationTask> 

      <operationResource></operationResource> 

      <operationMethod></operationMethod> 

      <operationApplication>Freeling</operationApplication> 

      <operationInputs> 

             <parameter> 

                 <parameterName>language</parameterName> 

                 <messageName>PosTaggerRequest</messageName> 

                 <parameterDescription>Language code</parameterDescription> 

                 <defaultValue></defaultValue> 

                 <isConfigurationParameter>false</isConfigurationParameter> 

                 <semanticType>http://ontology/#LangageCode</semanticType> 

                 <XMLSchemaTypeName>LanguageISO639-iso-639-3</XMLSchemaTypeName> 

                 <XMLSchemaURI>http://types/#LanguageISO639-iso-639</XMLSchemaURI> 

                 <formats> </formats> 

              </parameter> 

 

             <parameter> 

                 <parameterName>text</parameterName> 

                 <messageName>PosTaggerRequest</messageName> 

                 <parameterDescription>Input text to be tagged</parameterDescription> 

                 <defaultValue></defaultValue> 

                 <isConfigurationParameter>false</isConfigurationParameter> 

                 <semanticType>http://ontology/#TextType</semanticType> 

                 <XMLSchemaTypeName>TextType</XMLSchemaTypeName> 

                 <XMLSchemaURI>http://types/#TextType</XMLSchemaURI> 

                 <formats> </formats> 

                 </parameter> 

Semantic Model 

(taxonomy + shared objects) 



 

D3.1 Architecture and design of the platform 

 
 

 

 

    

 

   
    </xs:complexType> 

<xs:complexType name=" LanguageISO639-iso-639-3-codeType "> 

… 

<xs:complexType name="TextType"> 

        <xs:choice> 

            <xs:element name="string" type="xs:string"/> 

            <xs:element name="file" type="xs:anyURI"/> 

        </xs:choice> 

    </xs:complexType> 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 

9.2.5 Biocatalogue web user interface 
Figure 20: Biocatalogue user interface 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
100 

9.2.6 myExperiment 

Figure 21: myExperiment main page 

 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
101 

9.2.7 Common interfaces design 

9.2.7.1 Sentence Splitting 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
102 

9.2.7.2 Crawling 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
103 

9.2.7.3 Tokenization 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
104 

9.2.7.4 Named Entity Recognition 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
105 

9.2.7.5 Lemmatization 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
106 

9.2.7.6 PoS tagging 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
107 

9.2.7.7 Alignment 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
108 

9.2.7.8 Parsing 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
109 

9.2.7.9 Term Extraction 



 

D3.1 Architecture and design of the platform 

 
 

 

 
110 

 



 

D3.1 Architecture and design of the platform 

 
 

 

 
111 

9.2.7.10 Topic Identification 



 

D3.1 Architecture and design of the platform 

 
 

 

 
112 

 


