

SEVENTH FRAMEWORK PROGRAMME
THEME 3

Information and communication Technologies

PANACEA Project
Grant Agreement no.: 248064

Platform for Automatic, Normalized Annotation and

Cost-Effective Acquisition
of Language Resources for Human Language Technologies

D3.3
Second version (v2) of the integrated platform

and documentation

Dissemination Level: Public
Delivery Date: October 21th 2011
Status – Version: Final v01
Author(s) and Affiliation: Marc Poch (UPF), Olivier Hamon (ELDA), Antonio Toral

(DCU), Prokopis Prokopidis (ILSP), Roberto Bartolini
(CNR-ILC), Francesco Rubino (CNR-ILC), Gregor
Thurmair (LG), Vassilis Papavassiliou (ILSP) Núria Bel
(UPF)

Relevant Panacea Deliverables
D3.1 Architecture and Design of the Platform
D3.2 First version (v1) of the integrated platform and documentation
D7.2 First evaluation report. Evaluation of PANACEA v1 and produced resources

 D3.3 Second version (v2) of the integrated platform and documentation

This document is part of technical documentation generated in the PANACEA Project, Platform
for Automatic, Normalized Annotation and Cost-Effective Acquisition (Grant Agreement no.
248064).

This documented is licensed under a Creative Commons Attribution 3.0 Spain License. To view
a copy of this license, visit http://creativecommons.org/licenses/by/3.0/es/.

Please send feedback and questions on this document to: iulatrl@upf.edu

TRL Group (Tecnologies dels Recursos Lingüístics), Institut Universitari de Lingüística
Aplicada, Universitat Pompeu Fabra (IULA-UPF)

D3.3 Second version (v2) of the integrated platform and documentation

i

Table of contents
1 Introduction ... 4

2 Panacea Platform definition (version 2) .. 4

2.1 Tools / Software .. 5

2.1.1 Soaplab .. 5

2.1.2 Biocatalogue .. 5

2.1.3 Taverna .. 5

2.1.4 myExperiment ... 5

2.2 Common interface ... 5

2.3 Travelling Object ... 5

2.4 Documentation: manuals, guidelines, articles ... 5

2.4.1 Common Interface documentation .. 5

2.4.2 Travelling Object documentation .. 6

2.4.3 Web services documentation ... 6

2.4.4 Workflows documentation .. 6

2.4.5 Frequently asked questions ... 7

2.4.6 Panacea tutorial ... 7

2.4.7 Articles, publications, etc. ... 8

3 Web Services ... 8

3.1 Soaplab .. 8

3.1.1 Tomcat 7 and Soaplab 2.3.1 Spinet bug .. 9

3.1.2 Parameter name bug .. 9

3.1.3 Soaplab output size limit patch ... 10

3.1.4 Soaplab polling .. 10

3.1.5 Limit web services usage .. 11

3.1.6 Temporary files deletion ... 11

3.2 Deployed web services .. 11

3.3 WP3 web services ... 15

3.3.1 Panacea Conversor .. 15

3.3.2 Grafconverter_skeleton and Grafconverter_postagging 15

3.3.3 Soaplab wsdl validator .. 15

3.3.4 fc_freeling_text_2_conll_it ... 15

3.4 WP4 Web Services .. 16

D3.3 Second version (v2) of the integrated platform and documentation

ii

3.5 WP5 Web Services .. 16

3.5.1 Hunalign .. 16

3.5.2 GMA ... 16

3.5.3 BSA ... 16

3.6 The registry: sharing web services .. 17

4 Workflows ... 18

4.1 MyExperiment: sharing workflows ... 18

4.1.1 Deployment ... 18

4.1.2 Modifications .. 19

4.1.3 Shared workflows .. 19

4.2 Taverna .. 20

4.2.1 Polling ... 20

4.2.2 Retries ... 21

4.2.3 Parallelization .. 22

4.2.4 Taverna Server .. 23

4.2.5 Taverna on Windows .. 23

4.3 Workflows ... 23

4.3.1 Panacea Common Interface validation for Soaplab web services 24

4.3.2 Merge list of errors to string .. 24

4.3.3 WORD and PDF freeling tagging and stylesheet .. 24

4.3.4 Freeling tagging for crawled data .. 24

4.3.5 Freeling to Desr - From text cleaned to text parsed .. 24

4.3.6 Bilingual sentence alignment for crawled data ... 24

4.3.7 Bilingual sentence alignment for crawled data EN EL 25

4.3.8 Bilingual sentence alignment (using GMA) for crawled data 25

4.3.9 Bilingual word aligner for crawled data .. 25

4.3.10 GrAF PoS tagging with Freeling for basicxces documents 25

5 Complementary tools .. 25

5.1 GIT Server ... 25

6 Massive data .. 26

6.1 Involved variables ... 26

6.2 Handling massive data .. 27

6.2.1 Using Taverna features .. 27

6.2.2 Soaplab .. 27

D3.3 Second version (v2) of the integrated platform and documentation

iii

6.2.3 Temporary files management .. 27

6.3 First tests report ... 28

6.4 Second tests report .. 28

6.4.1 Scenario 1 .. 28

6.4.2 Scenario 2 .. 29

6.4.3 Scenario 3 .. 30

6.4.4 Scenario 3: DCU ... 31

6.5 Conclusions and future work ... 31

7 GRAF .. 32

7.1 Stand-off analysis .. 32

7.2 The GrAF format ... 33

7.3 Preparing tools: output modification ... 34

7.4 GrAF Converter ... 34

7.5 GrAF Travelling Object Document path ... 35

8 Other technologies .. 35

9 Security ... 35

9.1 Virtualization ... 35

9.2 Limiting Web Services .. 37

10 The previous evaluation .. 38

11 Workplan updates .. 38

12 Conclusion and future work .. 39

13 Bibliography .. 40

14 Annex .. 41

14.1 Web Services Disclaimers ... 41

14.2 Usage conditions ... 41

14.2.1 Temporary files deletion ... 41

14.2.2 Fair Share Policy on Parallel Process Running ... 41

14.3 Workflow images .. 42

14.4 From BasicXces to GrAF .. 49

14.5 Taverna captures ... 50

D3.3 Second version (v2) of the integrated platform and documentation

4

1 Introduction
The 2nd version of the platform is working and WP4 CAA and WP5 aligners are deployed. The
Registry, deployed for the 1st version of the platform, is operational and it has now 70 registered
web services. The PANACEA myExperiment portal has been deployed to share workflows
among users who can execute those workflows with Taverna. Massive data solutions have been
developed for users and web service providers and workflows have been redesigned and
improve to handle larger amounts of data. This deliverable will present all the work developed
for WP3 and its documentation.

2 Panacea Platform definition (version 2)
The Panacea Platform is defined in this section considering the technological options chosen in
the design phase and according to deliverable D3.1.

The Panacea Platform definition will be divided in two parts: a Stable Definition and a
Variable De finition. The Stable Definition is an abstract description and will be used in all
Panacea platform versions. On the other hand, the Variable Definition is used to establish the
Panacea Platform characteristics and it may have differences between Panacea Platform
versions.

Stable Definition: Panacea platform is an interoperability space based on tools, guidelines, a
common interface definition, and a “travelling Object” specification.

Variable Definition:

Panacea Platform Version 2:
Tools: Taverna1, BioCatalogue2, Soaplab3. myExperiment4,
Common Interface (CI): defined in deliverable D3.1.
Travelling Object (TO): TO1 defined in deliverable D3.1 and GrAF5.
Documentation: Manuals, guidelines, etc.
(New tools or specifications with respect to the platform version 1 are underlined)

The following sections are going to list and describe these specifications or reference another
document.

1 http://www.taverna.org.uk

2 http://www.biocatalogue.org

3 http://soaplab.sourceforge.net/soaplab2

4 http://www.myexperiment.org

5 The Graph Annotation Format (Ide and Su-dermam, 2007)

D3.3 Second version (v2) of the integrated platform and documentation

5

2.1 Tools / Software

2.1.1 Soaplab
Soaplab is the wrapper that allows service providers to easily deploy command line tools as web
services. The 2nd version of the platform uses Soaplab version 2.3.1 with some PANACEA
improvements to help with larger files (Section 3.1). The new 2.3.2 was released in 16th of June
and will be tested to be used in the 3rd version of the platform.

2.1.2 Biocatalogue
Biocatalogue was deployed and modified to be the PANACEA registry for the first version of
the platform. It has proven to be useful and user friendly.

2.1.3 Taverna
Taverna is the workflow editor for the PANACEA platform. For the platform version 2 the used
Taverna version is Taverna workbench 2.2.0. On 14th of July the Taverna workbench 2.3.0 was
released and it will probably be used in platform version 3 after some tests. This release was
expected sooner and this is why it hasn’t been used for the actual version of the platform.

2.1.4 myExperiment
MyExperiment is a social network to share workflows and other scientific objects. It has been
deployed by ELDA for the 2nd version of the platform for users to share and find workflows and
it’s presented as the “PANACEA myExperiment portal” (http://myexperiment.elda.org).

2.2 Common interface
As explained in D3.1 and D3.2 the Common Interface (CI) was designed for different kind of
tools and documented in several ways to facilitate its use. The CI hasn’t been changed for this
version of the platform as all the needed definitions were already done.

2.3 Travelling Object
The Travelling Object (TO) has been used to transport data between components in PANACEA
and it has not been changed from its original design. It was documented in deliverable D3.1
Section 6.1.

A new Format has been introduced to be used in some specific situations as TO. The adopted
stand-off format is the GrAF standard. Converters, web services and workflows have been
developed for some scenarios to work with GrAF.

2.4 Documentation: manuals, guidelines, articles
This section is devoted to list and describe the documentation developed for the 2nd version of
the platform.

2.4.1 Common Interface documentation
The Common Interface documentation can be found on the Panacea website (documents6
section of info for professionals) and in this deliverable zip file. It consists of four documents:

 types1.2.xsd: the types file.

6 http://panacea-lr.eu/en/info-for-professionals/documents/

D3.3 Second version (v2) of the integrated platform and documentation

6

 PANACEA-CI_documentation_v01.2.pdf: documentation for the service providers
about the CI. It contains the basic and necessary information for the service providers.

 types1.2.pdf: very detailed document about the CI.

 Types1.2 Web documentation: web version of the very detailed documentation.

2.4.2 Travelling Object documentation
The Travelling Object (TO) was thoroughly described in deliverable D3.1. There is no further
documentation about it. That TO, based on XCES format, and now called TO1 is still being
used in most workflows.

A new format has been introduced and it will be explained in detail section 7 of this deliverable.

2.4.3 Web services documentation
Web services can be documented in many different ways. For Panacea platform version 1 and 2,
web service providers must document their web services using the Soaplab metadata file
(ACD7) and the registration process at the registry. This is the minimum amount of
documentation all web service providers must do.

The ACD file is used to describe the web service: the script to be run, the parameters, help
messages, etc. Thus, the web service providers are encouraged to provide as precise and
descriptive information as possible to help web service users.

When a web service is registered most metadata is extracted automatically by the registry and
presented to the users. However, there can be an extra process of documentation called
annotation. Web service providers can “categorize” the web service, add tags, fill in some forms
with metadata, etc. A better annotated web service will be used by more users if it’s easier to
find (the BioCatalogue website has more than 1000 web services), its functionality is better
understood and its technical aspects are better described.

Two disclaimers regarding usage conditions were developed at ELDA for the 2nd version of the
platform and shared among partners. These disclaimers are being used in the “usage conditions”
field which is one of the metadata fields used to describe a web service in the PANACEA
registry. Both texts can be found on Section 14.1 of this document.

2.4.4 Workflows documentation
All workflows documentation can be found on the PANACEA myExperiment portal. Each
uploaded workflow has its own metadata and graphic representation (low and high resolution
pictures). Description field is used to give a general overview of the workflow and tags are used
by the search mechanism.

7 ACD: Ajax Command Definition.

D3.3 Second version (v2) of the integrated platform and documentation

7

2.4.5 Frequently asked questions
A FAQs list has been updated for fast access to some typical questions, tips and tricks. It can be
found in the Panacea website (FAQs8 section of info for Professionals). It is based on
PANACEA developers experience and some real users’ feedback.

2.4.6 Panacea tutorial
The PANACEA tutorial has been updated and now includes different documents. All
documents can be found on this deliverable and the last updated are posted on the tutorials page
of the PANACEA website (http://panacea-lr.eu/en/tutorials/). Feedback from users was taken
into account when developing these tutorials.

The first document is a documentation index. It lists all the relevant documentation for
PANACEA. It lists all tutorials and guidelines made by PANACEA partners and other manuals
found on the internet that can be helpful for the user.

The second document is the general PANACEA tutorial which is an updated version of the
previous one released for the platform version 1.

Afterwards, there are two specific tutorials focused on Soaplab and Taverna for PANACEA
version 2.

Soaplab tutorial includes all the relevant information for platform version 1 and now includes
all new topics about platform version 2. Soaplab tutorial content is as follows:

 Platform version 1

o Technical description summary

o Describing your command line tool: Metadata

o Deployment and configuration

o Test your web service: Spinet web client

o Clients for Soaplab

 Platform version 2

o Bug: Tomcat 7 and Soaplab 2.3.1 Spinet (Solved)

o Soaplab output size limit patch

o Soaplab web services limits

For the second version of the platform, a few video tutorials have been prepared and posted on
the tutorials page (http://panacea-lr.eu/en/tutorials/). These videos can be very helpful for users
because they show the PANACEA platform live.

Videos are recorded in High Definition (HD) and it’s recommended to see them in full screen.

8 http://www.panacea-lr.eu/en/info-for-professionals/faqs/

D3.3 Second version (v2) of the integrated platform and documentation

8

There is also some specific documentation files (sometime together with software) posted on the
PANACEA myExperiment portal:

 “Limiting web services”9 these document and software developed at DCU is used to
avoid abuses of users when using web services. All this information can be found on the
Soaplab tutorial and will be further described in the Soaplab Section of this document
(Section 3.1).

 “Soaplab (2.3.1) output size limit patch ”10 is a piece of software and its
documentation. It’s used to limit the data being transferred inside the SOAP message. It
helps improving the network use and forces users to make use of URLs instead of big
SOAP messages. UPF developed this patch after some experiments using PANACEA
workflows.

 “Temporary files cleaner”11 is a document describing how to handle temporary files
deletion with different software and platforms developed at ILC. It also includes a Java
program to delete those files.

 “Naming co nvention”12 is a naming convention proposal developed at ILC aimed to
harmonize the names used with web services and workflows in different situations.

2.4.7 Articles, publications, etc.
This is a list of PANACEA articles, papers etc.:

 “Interoperability and technology fo r a language resources fa ctory” this article will
be presented on the Workshop on Language Resources, Technology and Services in
the Sharing Paradigm – November 12, 2011 at IJCNLP 2011 (Chiang Mai, Thailand).
The article can be found on this deliverable13.

3 Web Services
Following section describes the work done for platform v2 regarding web services.

3.1 Soaplab
In this section we are going to describe the work developed with Soaplab for the 2nd version of
the platform:

 Tomcat 7 and Soaplab 2.3.1 bug

9 http://myexperiment.elda.org/files/4

10 http://myexperiment.elda.org/files/3

11 http://myexperiment.elda.org/files/1

12 http://myexperiment.elda.org/files/2

13 Publications/IJCNLP2011.pdf

D3.3 Second version (v2) of the integrated platform and documentation

9

 Parameter name bug

 Soaplab messaging improvement

 Soaplab polling

 Limit web service usage

 Temporary files deletion

3.1.1 Tomcat 7 and Soaplab 2.3.1 Spinet bug
When the 2nd version of the platform development started it was a good moment to look for new
versions and updates of the software involved. There was a new version of the Apache Tomcat
server. After the installation process it was time to verify the compatibility of our existing
Sopalab web services. Web services responded normally to the new server but Spinet web client
wasn’t working at all. We reported the bug to Soaplab developers who soon send us the solution
which can be found on the documentation (Soaplab tutorial). Soaplab developers fixed this bug
for Soaplab 2.3.2 release.

3.1.2 Parameter name bug
A bug was found on the schema files of web services deployed at DCU due to the parameter
names. Aligners’ web services following the CI must have these mandatory parameters:

 source_corpus

 source_language

 target_corpus

 taget_language

All of them have the underscore character which is the cause for this bug. The expected schema
piece of xml for one of these parameters should be like below:

<xs:choice id="source_corpus">
<xs:annotation>
<xs:documentation>help: Tokenised one-sentence-per-line
text.</xs:documentation>
</xs:annotation>
<xs:element name="source_corpus_direct_data" type="xs:string"/>
<xs:element name="source_corpus_url" type="xs:string"/>
</xs:choice>

In this correct schema the parameter “source_code” has a “choice” between direct_data and
URL.

The following piece of xml shows the malformed schema:

<xs:element name="source" minOccurs="0" maxOccurs="unbounded">
 <xs:simpleType>
 <xs:restriction base="xs:token">
<xs:enumeration value="corpus_direct_data" />
<xs:enumeration value="corpus_url" />
<xs:enumeration value="language" />

D3.3 Second version (v2) of the integrated platform and documentation

10

In the malformed schema the parameter name is incorrect and it no longer offers a choice but an
enumeration of parameters totally incorrect.

This bug was reported to Soaplab developers who fixed it and send us a patch to solve it in
Soaplab version 2.3.1 and they also fixed it for Soaplab 2.3.2 release.

3.1.3 Soaplab output size limit patch
During the numerous test and studies carried out in UPF regarding Soaplab and Taverna it was
found that Taverna Soaplab plugin is not using the best option to gather results from web
services.

Soaplab operations include methods to gather the output result, only the URL or both. The idea
is simple: if you have small data you can gather the data itself and the URL but if you’re dealing
with big files is much better to use only the URL. Using references instead of the data helps
reducing the use of the network, memory and performance of all the software involved.

The problem is that Taverna plugin is using always the Soaplab operation which uses both
direct data and the URL. Therefore, the data is being transferred twice. To solve this particular
issue UPF has developed a patch for Soaplab to introduce a new parameter. This parameter
limits the amount of data that can be transferred inside the SOAP message but it doesn’t
modifies the Soaplab operations at all. When the data is larger than a limit (specified by the web
service provider) the direct data result is changed by a message telling the workflow designer
that URL should be used instead.

This technique will help reduce the network usage and improve performance for workflows
using large data files with the Taverna Soaplab plugin. During the experiments it was found that
Taverna hangs for some workflows with files larger than a few MB if the Soaplab web services
don’t use this patch.

The patch and its documentation can be found on the PANACEA myExperiment portal
(http://myexperiment.elda.org/files/3).

3.1.4 Soaplab polling
All programs calling web services have timeouts to protect the program from hanging waiting
for a web service to answer (usually 5 minutes or similar). A web service may fail, or its server
could be down or hang, etc. so these timeouts are very useful.

However, when we want to process a big file with a lot of data this will take more time than the
timeout limit in most cases. Soaplab has a solution for this problem: the polling technique. The
idea is simple: instead of sending a request to the web service and wait for the answer, the
program must make periodic requests to the web service to see if it has finished. If these
requests are made more often than the timeout the web service will be able to process the data
and the client program will know when it finishes.

For the 2nd version of the platform workflows are designed using "polling" and detailed
documentation can be found on the "Taverna tutorial". It’s presented there because the polling is
always used from Taverna and the Taverna Soaplab plugin offers a user friendly approach.

D3.3 Second version (v2) of the integrated platform and documentation

11

3.1.5 Limit web services usage
With the growing number of web services and users the concurrent calls to the same server may
have an important impact on machine resources. DCU has some of the most machine resources
consuming web services and has developed a technique to limit web services. Limits will affect
concurrent executions and input/output data size.

Concurrent executions limit is based on some scripts used to monitor the amount of web
services being executed. If that limit is reached, next requests are queued if the queue is not full;
otherwise the request is rejected.

Input data size limit for aligners has been done modifying the scripts used to run the aligners.
DCU modified those scripts adding a sentence limit for input data. This limit combined with the
patch to limit output size using direct data (3.1.3) offer a safe system for data size limit.

Limiting web service is described in detail in "Limiting web services" technical report where scripts and
examples can be found. This document is posted on the PANACEA myExperiment portal
(http://myexperiment.elda.org/files/4).

3.1.6 Temporary files deletion
With the growing number of experiments the number of temporary files and results stored on
service providers’ servers grow very fast. Running a single Soaplab web service generates a
minimum of 5 files. A workflow could have several calls to the same server and experiments
with more than 1000 calls are made several times a day. This means that our servers must be
able to handle more than 100000 temporary files a day.

Each web service provider has the responsibility to deal with these files and it's for their best
interest to do it. ILC developed software and a tutorial describing how to handle temporary files
even if there is more than one server involved and some files must be kept for more time than
others. For example, results can be kept for a few days while temporary files can be deleted in a
few hours.

The file with the manual and the software can be found on the PANACEA myExperiment portal
(http://myexperiment.elda.org/files/1).

3.2 Deployed web services
The list of deployed web services is presented in this section and some relevant web services for
Panacea platform version 2 presented.

Current status of registered web services at the Panacea registry on 19-09-2011. Links and
names may change for technical reasons:

Name Type Category Provider Registry
Number

grafconverter_skeleton Soaplab Format conversion ws04-iula-upf-edu 143

grafconverter_postagging Soaplab Format conversion ws04-iula-upf-edu 142

signatures2weka Soaplab ws04-iula-upf-edu 138

D3.3 Second version (v2) of the integrated platform and documentation

12

Sed Soaplab Corpus Processing ws04-iula-upf-edu 137

theta_estimation Soaplab
Lexicon/Terminolog
y Extraction

ws04-iula-upf-edu 136

classify Soaplab
Lexicon/Terminolog
y Extraction

ws04-iula-upf-edu 135

soaplab_wsdl_validator Soaplab Management ws04-iula-upf-edu 134

xsltproc Soaplab Format Conversion ws04-iula-upf-edu 117

pdftotext Soaplab Format Conversion ws04-iula-upf-edu 116

panacea_conversor Soaplab Format Conversion ws04-iula-upf-edu 115

iconv Soaplab Format Conversion ws04-iula-upf-edu 114

html2text Soaplab Format Conversion ws04-iula-upf-edu 113

catdoc Soaplab Format Conversion ws04-iula-upf-edu 112

vocabulary_analysis Soaplab Statistics Analysis ws04-iula-upf-edu 110

tfidf Soaplab Statistics Analysis ws04-iula-upf-edu 109

ngrams Soaplab Statistics Analysis ws04-iula-upf-edu 108

calcular_p_cue_class Soaplab Statistics Analysis ws04-iula-upf-edu 107

freeling_parsed Soaplab Syntactic Tagging ws04-iula-upf-edu 106

freeling_dependency Soaplab Syntactic Tagging ws04-iula-upf-edu 105

kwic Soaplab Text mining ws04-iula-upf-edu 103

freeling_tokenizer Soaplab Tokenization ws04-iula-upf-edu 101

freeling_tagging Soaplab
Morphosyntactic
Tagging

ws04-iula-upf-edu 99

freeling_morpho Soaplab
Morphosyntactic
Tagging

ws04-iula-upf-edu 98

ilsp_sst Soaplab
Corpus Processing,
Tokenization

nlp-ilsp-gr 131

ilsp_mono_crawl Soaplab Crawling, Corpus nlp-ilsp-gr 130

D3.3 Second version (v2) of the integrated platform and documentation

13

Processing

ilsp_lemmatizer Soaplab
Stemming/Lemmatiz
ation, Corpus
Processing

nlp-ilsp-gr 129

ilsp_fbt Soaplab
Morphosyntactic
Tagging, Corpus
Processing

nlp-ilsp-gr 128

ilsp_bilingual_crawl Soaplab
Crawling, Language
Guessing, Corpus
Processing

nlp-ilsp-gr 127

boilerplate_remover Soaplab Corpus Processing nlp-ilsp-gr 126

sentsplit_tok2to Soaplab Format Conversion www-cngl-ie 95

sentalg_tok_to2word_alg Soaplab Format Conversion www-cngl-ie 94

gma Soaplab Alignment www-cngl-ie 93

bsa Soaplab Alignment www-cngl-ie 92

anymalign Soaplab Alignment www-cngl-ie 91

hunalign Soaplab Alignment www-cngl-ie 80

hello_panacea Soaplab www-cngl-ie 79

gizapp Soaplab Alignment www-cngl-ie 78

europarl_tokeniser Soaplab Tokenization www-cngl-ie 77

europarl_sentence_splitter Soaplab Tokenization www-cngl-ie 76

europarl_lowercase Soaplab Format Conversion www-cngl-ie 75

chunk_aligner Soaplab Alignment www-cngl-ie 74

berkeley_tagger2to Soaplab Format Conversion www-cngl-ie 73

berkeley_tagger Soaplab
Morphological
Tagging

www-cngl-ie 72

berkeley_parser Soaplab Syntactic Tagging www-cngl-ie 71

berkeley_aligner Soaplab Alignment www-cngl-ie 70

D3.3 Second version (v2) of the integrated platform and documentation

14

aligner2to Soaplab Format Conversion www-cngl-ie 69

ExportLMF Soap
Lexicon/Terminolog
y Extraction

wiki-ilc-cnr-it 21

FC_Freeling_text_2_conll_
IT

Soap Format Conversion wiki2-ilc-cnr-it 141

TPC_Desr_dependencypar
ser_it

Soap wiki2-ilc-cnr-it 140

TPC_Freeling_token_split
_POSTagger_it

Soap
Morphological
Tagging,
Tokenization

wiki2-ilc-cnr-it 139

TPC_Freeling_token_split
_POSTagger_en_ca_es_it

Soap

Morphosyntactic
Tagging, Syntactic
Tagging,
Morphological
Tagging

wiki2-ilc-cnr-it 90

FC_converter_kaf_to Soap Format Conversion wiki2-ilc-cnr-it 88

FC_converter_fl_to Soap Format Conversion wiki2-ilc-cnr-it 87

iula_paradigma Soaplab kurwenal-upf-edu 125

iula_preprocess Soaplab kurwenal-upf-edu 124

get_concordances Soaplab Querying kurwenal-upf-edu 123

busca_signatura_in_corpus Soaplab Querying kurwenal-upf-edu 122

apply_re Soaplab Querying kurwenal-upf-edu 121

iula_lexicon_lookup Soaplab kurwenal-upf-edu 120

iula_tokenizer Soaplab kurwenal-upf-edu 119

iula_tagger Soaplab kurwenal-upf-edu 118

D3.3 Second version (v2) of the integrated platform and documentation

15

3.3 WP3 web services
In this section some of the deployed web services are explained regarding its relevance to the
2nd version of the platform.

3.3.1 Panacea Conversor
This web service has been updated to be able to convert the output of Freeling PoS to the TO1.
This will allow the workflow designers to choose between Freeling and the IULA tagger for
Spanish.

3.3.2 Grafconverter_skeleton and Grafconverter_postagging
These two web services developed at UPF make use of the grafconverter tool developed at ILC.
The first web service is in charge of extracting information from the basic XCES documents
crawled by ILSP web services. It creates a few basic files needed to create a GrAF document.
These few files together are called the GrAF skeleton. Afterwards, the skeleton is used together
with the PoS tagger output to create a complete GrAF document. This final GrAF is the output
of the grafconverter_postagging web service.

A workflow has been designed to create GrAF documents with PoS tagging information using
basic XCES documents as input. More detailed information about the Grafconverter will be
presented in the workflows section 4.3.10 as well as in the GrAF section 7.

3.3.3 Soaplab wsdl validator
Soaplab wsdl validator is a web service designed to check whether other Soaplab web services
are PANACEA Common Interface compliant or not.

It is based on a python script developed at UPF which connects to a web service and
automatically verifies the mandatory parameters used against the CI parameters proposal. The
input parameters to use this web service are the wsdl URL of the web service to be verified and
its functionality (PoS tagging, tokenization, alignment, etc.)

It was also developed a workflow to help web service providers with a lot of web services to
easily validate all of them with only one workflow execution. The workflow is presented in
section 4.3.1.

All partners with web services used the web service or the workflow to validate their web
services and the result of that task is presented in a report included in this deliverable14. There
are only a couple of warnings reported by the validator script: 1) the bilingual crawler due to the
fact that it’s being validated against the CI of a monolingual crawler and obviously it fails for
the two language parameters. 2) A parser web service which is only for Italian and the CI
expects a language parameter that is not necessary in this case. To summarize it can be said that
the report shows that all partners are following the CI for web services with a CI definition.

3.3.4 fc_freeling_text_2_conll_it
CNR has deployed a converter from the Freeling output to the Tanl format (the input format of
the dependency parser for Italian, DeSR). This tool is used when a user needs an Italian corpus
parsed at the syntactic dependency level, i.e. wants to execute the Freeling POS tagger and the

14 In this deliverable: /reports/PANACEA-WP3-t22-CI-validation-results-UPF-ILSP-DCU-ILC-final.pdf

D3.3 Second version (v2) of the integrated platform and documentation

16

DeSR dependency parser. In Panacea myExperiment, a workflow for Italian has been uploaded
chaining the Freeling POS tagger, the converter Freeling To DeSR and the DeSR parser. This
workflow allows the user to obtain different levels of linguistic analysis (sentence splitting,
tokenization, POS tagging, and dependency parsing). In the current version, the converter works
on the proprietary data formats as it was developed before the definition of the TO, and because
the conversion is specific to the individual tools due to tagsets idiosyncrasies and no 1:1
mapping.

Both the tagsets and the data formats are different in Freeling and DeSRr. DeSR uses the Tanl
tagset and the Conll format. The converter takes in input the Freeling text output (up to the POS
tag level) and performs these conversions:

1. It changes the Freeling format in Conll format (one token per line, attributes tab separated);

2.It translates each Freeling pos tag in Tanl pos. Where needed, we have implemented heuristics
to solve translation problems. However, some information is lost. (The conversions table can be
found at [URL of MyExperiment])

Documentation about the Conll format and the tanl tagset can be found here:

● http://nextens.uvt.nl/depparse-wiki/DataFormat

● http://medialab.di.unipi.it/wiki/Tanl_POS_Tagset

Work is ongoing for the development of a version of the converted through TO2 (GrAF), and
for the development of the converter from the DESR output to TO2.

3.4 WP4 Web Services
All WP4 web services deployed and ready to be used in the platform are reported on D4.4
appendix E.

3.5 WP5 Web Services
WP5 aligners web services are listed in this section as well as their registry entries.

Sentential Alignment:

3.5.1 Hunalign
This web service was presented on section 2.1.1 of D5.2.

Its Registry entry is http://registry.elda.org/services/80

3.5.2 GMA
This web service was presented on section 2.1.2 of D5.2.

Its Registry entry is http://registry.elda.org/services/93

3.5.3 BSA
This web service was presented on section 2.1.3 of D5.2.

Its Registry entry is http://registry.elda.org/services/92

D3.3 Second version (v2) of the integrated platform and documentation

17

Sub-sentential alignment:

Giza++

This web service was presented on section 2.2.1 of D5.2.

Its Registry entry is http://registry.elda.org/services/78

Berkeley Aligner

This web service was presented on section 2.2.2 of D5.2.

Its Registry entry is http://registry.elda.org/services/70

OpenMaTrEx chunk aligner

This web service was presented on section 2.2.3 of D5.2.

Its Registry entry is http://registry.elda.org/services/74

Anymalign

This web service was presented on section 2.2.4 of D5.2.

Its Registry entry is http://registry.elda.org/services/91

3.6 The registry: sharing web services
The PANACEA registry of web services has been slightly modified. In particular, changes
concern the layout of the registry. Indeed, the update of the last BioCatalogue version modified
the interface layout in the list of available services, presenting now more web services on a
single page than the previous version. For each web service, a summary is showed by default in
a box, including its name, its type (Soap, Soaplab), its status (passed, warning, failed), its
description and its provider. Simple view and detailed views of web services are also possible.

But the main modification is related to the addition of a link so as to access directly to the
Spinet form. Thus, it allows user a faster access to the web service in the list of Soaplab web
services. The Spinet link is only available for Soaplab web services.

Furthermore, the status monitoring frequency has been decreased to one check per day. This is
mainly due to 1) reduce the server load and 2) the lower activity on the registry, since
PANACEA partners have already registered their web services and then less services are
registered per day.

Finally, a few minor bugs have been corrected. The main is related to the WSDLUtils (the
service used by BioCatalogue to parse WSDL files into the BioCatalogue format) tool, which
has been updated, thanks to Biocatalogue developers. The errors fixed were preventing to add
some non Soaplab web services into the registry.

D3.3 Second version (v2) of the integrated platform and documentation

18

4 Workflows

4.1 MyExperiment: sharing workflows

4.1.1 Deployment
From the tools options to share research object, defined in D3.1, myExperiment15 is the one
PANACEA is currently using to provide a workflow catalogue. Following the first review
report advice the PANACEA myExperiment portal can be used to easily find example
workflows.

Likewise the registry, a PANACEA version of myExperiment has been installed on a local
server at ELDA so as to share workflows combining different web services. We then conducted
our own modifications and design and the PANACEA catalogue of workflows is independent
from any other project and may follow its own development. The PANACEA myExperiment is
available at http://myexperiment.elda.org. Workflows placed in the catalogue may then be
available to other partners and reused as wished.

The installation and setup of myExperiment have been rather easy and we benefited from the
experience of the registry. Indeed, the two applications are very close and developed by the
same groups. The PANACEA myExperiment is considered as stable since no daemons have
been restarted for several weeks, and workflows have been submitted in the meantime. Until
now (t20), 19 workflows have been submitted from DCU, ELDA, ILC, ILSP and UPF.

After being registered, providers can submit a new workflow by uploading a Taverna file.
Workflow providers can also add extra information such as tags, credits, sharing options,
license, description, etc.

Users can browse the catalogue of workflows and search for workflows using key words, but
also according to the type, tag, licence or workflow provider. A “runner” allows users to execute
workflows. Unfortunately, for the time being, it only works on Taverna 1.0 workflows.
Developers of myExperiment are working on a new version of the application which will be
able to run Taverna 2.0+ workflows.

Unlike the registry, there is no monitoring system for workflows: web services used in
workflows are checked within the registry.

In more details, the following functionality is available:

o List the available workflows;
o List the registered users;
o List user groups;
o List files;
o List packs (collections of different items listed above);
o Search in the different lists;
o Add and remove items of the different lists;
o Register as a user of the PANACEA myExperiment.

15 http://www.myexperiment.org

D3.3 Second version (v2) of the integrated platform and documentation

19

4.1.2 Modifications
Likewise BioCatalogue, no specific documentation is available about its features for developers.
However, PANACEA myExperiment was easier to deploy. Thus, configuration settings are
similar to the registry and little time has been needed to install. For debugging or help, a
“myexperiment-discuss” list is available for myExperiment users16.

However, further database corrections have been made so as to fix some bugs in the catalogue
of workflows. This was mainly due to compatibility difference of system or tool versions.

Main modifications are related to the design of the interface so as to adapt the layout (e.g.
colors) to the PANACEA web site, the logos and the main page information.

4.1.3 Shared workflows
The list of workflows is presented in this section in the current version of the PANACEA
MyExperiment (t20). At the same stage, six users are registered.

Name Type Provider MyExperiment
Number

bilingual word aligner for crawled data Taverna 2 UPF 9

Panacea Common Inte rface validation for
Soaplab web services

Taverna 2 UPF 25

ILSP Basic NLP Tools Taverna 2 ILSP 20

bilingual crawler output language splitter Taverna 2 UPF 4

bilingual sentence alignment for crawled
data

Taverna 2 UPF 7

WORD freeling tagging and stylesheet Taverna 2 UPF 23

GrAF PoS tagging with Freeling for
basicxces documents

Taverna 2 UPF 26

PDF sentence alignment Taverna 2 UPF 21

Freeling tagging for crawled data Taverna 2 UPF 5

bilingual sentence alignment for crawled
data EN EL

Taverna 2 UPF 8

Freeling to Desr - F rom text clea ned to
text parsed (with Token izer and Tagger
Freeling, Dependency Parser Desr)

Taverna 2 ILC 24

16 http://lists.nongnu.org/archive/html/myexperiment-discuss/

D3.3 Second version (v2) of the integrated platform and documentation

20

Merge list of errors to string Taverna 2 UPF 27

List example 01 Taverna 2 UPF 3

PDF freeli ng tagging with panacea
stylesheet

Taverna 2 UPF 22

IULA tagging for crawled data Taverna 2 UPF 6

MEDAR test workflow Taverna 2 ELDA 1

Wordalignment using GIZA++ Taverna 2 DCU 16

test01 Taverna 1 ELDA 2

bilingual sentence alignment (using GMA)
for crawled data

Taverna 2 DCU 19

4.2 Taverna
In this section all the relevant topics about Taverna are presented. Taverna is the workflow
manger for the 1st and 2nd version of the PANACEA platform. The needs of the project (large
data, many input files, and long lasting processes) make it necessary to make use of all the
functionalities that Taverna provides. These advanced features of Taverna will be used to design
robust workflows for the 2nd version of the platform. These are the presented topics:

 Polling

 Retries

 Parallelization

 Taverna Server

 Taverna on Windows

4.2.1 Polling
As mentioned before, “polling” is a very interesting feature of Soaplab web services that allow
the execution of long lasting processes without reaching the client’s timeout. If Taverna calls a
web service and it doesn’t answer in before this timeout the call is cancelled and an error is
reported. Thanks to Soaplab polling we will be able to skip this timeout by making periodic
requests to the web service to check its status.

Workflow designers can avoid the timeout by creating a series of calls to the soaplab operation
“getStatus” until the web service is finished and then use operation “getResults”. This would
perfectly work but it would create a much more complex workflow than what users in
PANACEA are used to (compared to 1st version of the platform workfows).

On the other hand, if designers make use of the Taverna Soaplab plugin (it was also used in the
1st version of the platform) they’ll be able to easily configure polling without making complex

D3.3 Second version (v2) of the integrated platform and documentation

21

series of calls. The plugin will make them automatically. This is one of the reasons why it was
important to use the plugin.

Figure 1: Polling parameters with Taverna Soaplab plugin

Figure 1 shows how to configure the polling in a Soaplab web service. “Interval” sets the initial
time between requests, the “backoff” parameter specifies how “Interval” is increased every time
and “Max interval” is the Max interval used between requests.

All this information can be found on the Taverna tutorial.

4.2.2 Retries
When a workflow has a few input files (it has a few iterations) if something goes wrong or one
of this files fails at some point of the workflow there is always the option of running the
workflow again.

However when there are a lot of iterations running the workflow again is a waste of time and
resources. Taverna implements an automatic retry system that allows the designer to configure
every web service call in a workflow.

D3.3 Second version (v2) of the integrated platform and documentation

22

Figure 2: retry parameters

In Figure 2 it can be seen how to configure retries for a web service and the parameters
involved.

The Taverna tutorial has a link to a myGrid video which is very descriptive and helpful to
understand how to use the “retry system” in Taverna.

4.2.3 Parallelization
Taverna offers to possibility to make multiple calls to the same service in one workflow. This
parallelization makes workflows with multiple iterations to finish earlier. The first simple test,
carried out in UPF about parallelization demonstrated that simply doubling (x2) one web service
in a workflow with only that service reduced the execution time in half.

Parallelization seems to be a great advantage but it has its drawbacks. Web services are run on
machines with limited resources (processors, memory, etc.) which cannot handle infinite
parallel calls to their web services. One problem is that most of those limits can only be
measured empirically. Some web service providers offer information about the limits of their
web services on the Registry.

A bad use of parallelization may cause the server to fail or to be very slow which is the opposite
of the desired behavior.

Figure 3 shows how to use the parallelization parameter for a web service in Taverna.

The documentation about Parallelization can be found on the Taverna tutorial.

D3.3 Second version (v2) of the integrated platform and documentation

23

Figure 3: Parallelization parameter

4.2.4 Taverna Server
The plan for PANACEA platform 2 was to have a Taverna Server where long lasting workflows
could be executed and results would be obtained later. Having Taverna on a server would allow
it to have a better internet connection and more resources (memory, faster hard drive, etc) than a
personal computer. It would also allow users to shutdown their computers while the workflow is
being executed on the server.

Taverna 2.2 server was tested but it didn’t fulfil PANACEA requirements of usability and
security. It required a lot of development to make it ready for users. It was decided to wait for
the Taverna Server 2.3 due to May 2011. Taverna release was delayed and now, according to
the Taverna roadmap, Taverna server was supposed to be released on August 2011 leaving no
time to include it in the platform version 2.

We expect Taverna Server 2.3 to be released soon and it would be tested to be used in the 3rd
version of the platform.

4.2.5 Taverna on Windows
During the tests done on Linguatec using Taverna on Windows operating system it was found
that Input parameters and read/write file capabilities had encoding problems. Taverna used the
default encoding used by the operating system and broke some characters. These bugs were
presented on D3.2 Section 5.4 and Linguatec developed an easy to use solution for read/write
operations in Taverna 2.3.2. These bugs were reported to Taverna developers who fixed them
for the new Taverna 2.3.0.

4.3 Workflows
Several relevant workflows are listed in this section regarding the 2nd version of the platform.
The rest of the workflows are presented can be found on the PANACEA myExperiment portal.

D3.3 Second version (v2) of the integrated platform and documentation

24

4.3.1 Panacea Common Interface validation for Soaplab web services
This workflow, shown in Figure 4 in 14.3 “Workflow images”, is a simple workflow designed
to use the “Soplab wsdl validator” presented on Section 3.3.3. It allows Web Service Providers
to validate the CI of all their web services in one workflow execution. The workflow and its
documentation can be found on: http://myexperiment.elda.org/workflows/25.

4.3.2 Merge list of errors to string
This workflow, presented in Figure 5 in 14.3 “Workflow images”, presents three different ways
to show a list of results and its advantages and problems. The output “list_with_errors” is the
tipical output in a workflow, it directly shows the output port of a processor. It presents a list of
elements and if there is an error that element is marked in red. There is not an easy way to copy
all results using this output but it contains all the information and never fails. The output
“Merged_output_fails” is a single merged output where all results are presented in a single
output. It’s really user-friendly because the results list can be copied with a simple CTRL+C. Its
drawback is that a single error on one element of the list makes this output fail. This is why it’s
always used with the direct to a port output. The final option is the “merged output without
errors”. This output stores every correct result in a temporary file and presents the list at the end.
This option avoids the errors but it only provides the correct outputs.

This new way to provide the output was designed at UPF in collaboration of mygrid support
team. The example workflow can be found in:
http://myexperiment.elda.org/workflows/27?version=2.

4.3.3 WORD and PDF freeling tagging and stylesheet
These are two workflows designed to get the PoS tagging of Word and PDF documents in the
PANACEA TO1 format. Using converters deployed at UPF, Word and PDF documents are
converted to plain text and afterwards processed with Freeling.

The workflow to process Word documents is presented in Figure 6 of 14.3 “Workflow images
and can be found on: http://myexperiment.elda.org/workflows/23. On the other hand, the
workflow to process PDF documents is posted on: http://myexperiment.elda.org/workflows/22.

4.3.4 Freeling tagging for crawled data
This workflow, presented in Figure 7 in 14.3 “Workflow images”, can process documents
downloaded using the ILSP crawler in the Basic XCES format, process them with Freeling PoS
tagger and present the results in the TO1 format.

The workflow is posted on http://myexperiment.elda.org/workflows/5.

4.3.5 Freeling to Desr - From text cleaned to text parsed
This workflow, developed at ILC and shown in Figure 8 in 14.3 “Workflow images”, combines
the PoS tagger of Freeling with a dependency parser.

It’s documented and posted in http://myexperiment.elda.org/workflows/24

4.3.6 Bilingual sentence alignment for crawled data
This workflow, presented in Figure 9 of section 14.3 “Workflow images”, can process crawled
data in the Basic XCES format. Using the “europarl tools” and “hunalign”, it can make the
sentence alignments and present them using the TO1.

D3.3 Second version (v2) of the integrated platform and documentation

25

This workflow can be found on http://myexperiment.elda.org/workflows/7

4.3.7 Bilingual sentence alignment for crawled data EN EL
The following workflow, shown in Figure 11 of section 14.3 “Workflow images”, uses the ILSP
web service to process Greek and allows using this language for sentence alignment (The
previous workflow cannot process Greek).

This workflow is posted on http://myexperiment.elda.org/workflows/8

4.3.8 Bilingual sentence alignment (using GMA) for crawled data
This workflow is like the “Bilingual sentence alignment for crawled data” (previously presented
on section 4.3.6) but instead of using “hunalign” it uses “GMA”.

This workflow is posted on http://myexperiment.elda.org/workflows/19

4.3.9 Bilingual word aligner for crawled data
This workflow, presented in Figure 11 of section 14.3 “Workflow images”, uses “hunalign” and
“Giza ++” to make the word alignment for Basic XCES documents. The output is presented
using the TO1 format.

This workflow can be found on http://myexperiment.elda.org/workflows/9

4.3.10 GrAF PoS tagging with Freeling for basicxces documents
This workflow, presented in Figure 12 of section 14.3 “Workflow images”, is an example to
show how to use the two new web services designed to create GrAF documents. The input data
for the workflow is Basic XCES (TO1) data crawled from the ILSP crawler. The data is
processed using the PoS tagger of Freeling and finally a GrAF is presented (as a set of output
documents).

This workflows is posted on http://myexperiment.elda.org/workflows/26

5 Complementary tools

5.1 GIT Server
Since PANACEA implies several developments (especially in WP3, WP4 and WP5), a source
version control system has been deployed. In particular, it helps developers to work on
application development, or resource building, in keeping track of successive modifications and
go back on previous versions. In our case, it also aims at storing tools and resources of the
project.

Several options exist like SVN, CVS or GIT for the most well-known. Contrary to SVN and
CVS, GIT is a distributed system (against centralised) and allows the management of branches
for specific tasks. It also seems the GIT performance is higher and it is the backbone technology
used on the famous github17 portal. Therefore, in PANACEA, we choose to use GIT as our
source version control system.

17 https://github.com/

D3.3 Second version (v2) of the integrated platform and documentation

26

During the last few months and since t14, GIT is used by PANACEA partners. For the time
being, WP3, WP4 and WP5 have been the contributors. The activity can be summarized with 53
commits from 5 different users. Main activities have been observed during t14, t15 and t18.

To use PANACEA GIT, users have to install GIT, generate a public SSH key associated to a
password and send the public SSH key to ELDA. Next, access to PANACEA GIT is then
manually granted and users may pull and commit data.

6 Massive data
Handling massive data is one of the most challenging issues for the PANACEA platform. There
are many variables involved in the performance result and some of them cannot even be
controlled (like internet performance). The article “So you want high performance”18 by Peter
Lin show that achieving high results with internet web sites or web services is a complex task
that requires a hard work in all aspects involved.

In this section we will present a list of variables involved in the overall platform performance
and the first work done at the beginning of the second development phase about performance.
The first report about data tests is presented as well as the second. Conclusions and future work
about handling massive data can be found at the end of this section.

6.1 Involved variables
There are many aspects involved in the performance of a distributed software platform as
PANACEA. Some of them have just been noticed by PANACEA developers while doing the
tests, some are incontrollable, etc.

 Internet: local networks, WAN networks, Internet provider, etc. The network has a
very big impact on the performance depending on the experiment. The more input data
files (data is divided in many small files) the more network traffic generated. Thus, the
performance becomes more dependent on the network.

 The tools : the tools being deployed as web services obviously have an impact on
performance. Some of the tools consume a few resources and others lots of them. Some
of them may have memory leaks19 or non-optimal processes ending up with a lot of
wasted machine resources.

 The machine: The hardware involved has an obvious impact on performance: number
of CPUs, type of CPU’s, memory (amount and speed), hard drive (amount and speed),
etc.

 The Operating System: the operating system controls the different running processes,
the read/write operations, etc. It also has an impact on the software versions that can be
used.

18 “So you want high performance” article can be found in this deliverable: references/performance.pdf

19 Memory leaks: is a reserved portion of memory which is no longer used by the tool but is still reserved
by error. No other applications can use it.

D3.3 Second version (v2) of the integrated platform and documentation

27

 Web se rvices variables : there’re many variables under this section. The application
server (e.g. Tomcat), its variables, version, etc. The web service application (e.g.
Soaplab) its configuration parameters, timeouts, temporary files management, memory
usage, data transfer protocol, etc.

6.2 Handling massive data
After the first development phase it was time to benefit from some advantages within Taverna
and Soaplab to help handle massive data and to begin working in that direction.

In this section, the first’s movements towards handling massive data are described.

6.2.1 Using Taverna features
The first move about handling massive data was to make the already designed workflows more
robust and able to handle more files and bigger files.

Most crawled data by the ILSP crawler, is presented in small files (not more than 100 kb). For
this amount of data and for most of the deployed tools there are no timeout problems. But for
larger files (1 mb) the 5 minutes timeout in Taverna could be a problem. To avoid this timeout
the Soaplab “polling” technique is a great advantage. “Polling” (introduced in section 4.2.1)
allows the execution of long lasting processes without reaching the Taverna timeout. However,
this solution has its performance issues: polling implies periodically asking if the task is
finished. If the time between request its two high the system can be waiting a too much for an
already finished task. On the other hand, making requests too often can overload the server and
the network.

To make workflows more robust all workflows were modified to add “retries” to all web
services calls. Retries (introduced in section 4.2.2) allow avoiding some network errors or
servers problems by calling a service again when it doesn’t respond correctly.

To make executions faster, most workflows were modified to parallelize the calls to web
services. Parallelization (introduced in section 4.2.3) improves performance but if abused can
have a bad impact on performance (machines have limited resources). The problem is that its
optimal use can only be measured empirically.

6.2.2 Soaplab
During some tests it was found that the “Soaplab Taverna plugin” does not use the optimal
operation to gather results from the web services. It gathers the data and the URL reference to
that data. If the data result is not very small it’s always better to use only the URL because then
the amount of data being transferred is minimal. Soaplab was modified to improve this situation
and a patch (introduced in section 3.1.3) was shared among PANACEA service providers. The
output size limit patch makes Soaplab send the URL and a warning message instead of the
output data (the warning message is much smaller than the output data, improving the network
usage efficiency).

6.2.3 Temporary files management
It was easy to predict that with more experiments and more files to be processed temporary files
could become a problem. In section 3.1.6 it was introduced different options to periodically
delete temporary files.

D3.3 Second version (v2) of the integrated platform and documentation

28

6.3 First tests report
The first experiments were designed to show and learn how to use some of the used options to
handle massive data. The report20, showed the impact of using “polling”, “retries” and
“parallelization”.

Polling solves the timeout issue (test 1-A and 2-A) for larger files as expected and used with the
adequate requests interval can be very useful.

Parallelization does not always mean a faster execution, when the maximum capacity of the
machine is reached the parallelization is useless or it can even overload the server. It can also be
seen that a better server can better deal with numerous executions and parallelization.

The tests also show a considerable variance between the same experiment execution time. It was
seen that most execution were faster early in the morning due to de fact that the networks are
less used and nobody else was running any process on the servers.

It was also important to notice that Taverna workbench required more memory in order to
perform better and to be more robust against failures.

6.4 Second tests report

6.4.1 Scenario 1
This September it was time to run more tests. This time focused on testing only server
capabilities and dealing with more files than on April’s tests.

 Taverna is executed from a PC in UPF behind a proxy.

 The tested machine with deployed web services is iula04v.upf.edu:

- Linux based 64 bits virtual machine (deployed on a machine called Isolde)

- 1 CPU and 4GB of RAM.

- Tomcat 6.0.29 and Soaplab 2.3.1 (with the PANACEA patch)

One workflow was chosen to make the tests: “Freeling tagging for crawled data” presented in
section 4.3.4. This workflow is executed completely and solely in iula04v and it gathers the data
from another server (originally ILSP data server).

The workflow has 3 processes, all executed on the iula04server:

1. Panacea Converter: from basicXces to plain text. Parallelization x5

2. Freeling tagging: PoS tagging. Parallelization x5

3. Panacea converter: from PoS to Travelling Object 1 (XCES). Parallelization x5

20 The report can be found on reports/PANACEA-WP3-t22-Massive_data_tests-v02-deliverable.pdf

D3.3 Second version (v2) of the integrated platform and documentation

29

All three processes are executed 5 times in parallel which represents a total of 15 simultaneous
processes per input file. This represents a big load for a virtual machine with only one processor
assigned.

Surprisingly experiments reported more errors and were slower than the ones from April (test 7
of April report). For a few files it was only slower but for more files it didn’t finish or reported
errors.

There have been deployed more virtual machines on Isolde since April and this could be the
reason for the web services being slow. Although virtual machines have reserved memory and
CPU the hard drive access is the same for all the virtual machines.

It was also found with some tests that gathering data from ILSP was dramatically slow during a
few periods of time causing unsustainable delays for the system.

The busy server and the slow network can explain a worse overall performance but Taverna not
finishing the execution had to be something else. Taverna developers and support team were
contacted and the problem was reported. In Figure 13: Never finishing execution (section 14.5)
it can be seen the execution of 661 files, the “running” message and some iterations with the
“waiting for data message”. This last message usually appears when one iteration is being
executed and the result of one web service has not been reported to Taverna yet. Unfortunately,
in this scenario the answer from the web service never gets to Taverna.

Several tests were done and some showed this problem. All relevant logs (Taverna and Soaplab)
showed no warning or error message on those concrete iterations with the “waiting for data”
message. Taverna should be able to detect these situations but it does not and the worst problem
is that results cannot be saved after the execution is cancelled. PANACEA is still working in
collaboration with Taverna developers to find the cause of this bug.

On the other hand, other problems were detected. Some executions suffered bursts of errors, a
big number of iterations with errors. Figure 14: errors burst (section 14.5) shows a series of
errors in red in a correctly finished workflow execution. The study of the errors showed
different causes: in some cases it was due to the network problems with ILSP servers and others
showed that the machine or Tomcat run out of memory. The burst was due to the time it took
Tomcat to recover. This is probably showing a memory leak problem since the use of memory
should not rice because the programs are being run more times. A deep analysis of the memory
usage done by Tomcat, Soaplab and the tools involved (Freeling and the converter) should be
done. This is a complex task that takes a lot of time but it should be considered for the 3rd
version of the platform.

6.4.2 Scenario 2
It was time to improve the virtual machine. More resources were assigned to iula04v and some
updates were done:

 2 CPUs instead of only one. However it must be taken into account that the host
machine Isolde has only 8 CPUs for its internal use and 5 running virtual machines.
This means that the CPUs may have to be shared anyway.

 6 GB RAM instead of just 4.

D3.3 Second version (v2) of the integrated platform and documentation

30

 New Tomcat version 7.0.8

These improvements reduced the error bursts as expected but they didn’t improved execution
time and didn’t solved the problem of unfinished executions due to the “waiting for data”
iterations.

After a few research it was found that using the Apache Tomcat Native Library could improve
performance:

Test results:

 Tomcat 7.0.8 + libtcnative-1 1.1. 19 (lucid repositories). The library libtcnative-1
1.1.19 was downloaded from the lucid repositories (lucid is the Ubuntu version on the
virtual machine). This combination was found very unstable. The server hung easily
even with simple tests with Spinet web client.

 Tomcat 7.0.21 + libtcnative-1 1.1.1 9 (lucid repositories). A newer version of Tomcat
was installed to see if it worked better in combination with the Native Library. It kept
being unstable but correct executions were much faster than before (without the native
library). Converter executions, which used to vary from 10 to 20 seconds became more
stable around 6 seconds. The changes log on the Tomcat website reported that version
1.1.19 could hung the Java virtual machine so it was decided to try find antoher version.

 Tomcat 7.0.21 + libtcnative-1 1.1. 20-1 (maverick repositories). This is the actual
combination on the iula04v machine. To install the new version of the Native Library
the system was connected to another version of Ubuntu (maverick) for which the new
library was existent. The system is much more stable now but it hangs sometimes.
Performance has improved reducing execution time.

The repositories must be check periodically for new updates and more stable versions and
probably some test should be done compiling the Native library directly on the iula04v machine
instead of using a software package.

6.4.3 Scenario 3
With the new Tomcat and Native library installed and the considerably improved performance it
was time to run the experiments with more data. However, it must be remembered that the non-
finishing workflows is still an issue. However, Taverna developers run the experiment several
times without being able to reproduce the “waiting for data” messages.

This could mean there’s a problem in the local Taverna being used to run workflows in the PC
at UPF. Taverna support team recommended using Taverna 2.3.0 and also try using the
command line instead the graphical interface. One very important advantage of the command
line tool to run workflows is that results are written in a directory during the execution so
there’s no need to wait until the end. This way, the problem with saving results in the graphical
workbench is avoided.

New experiments with 2k, 3k, 5k and 10k documents (1k files is around 1M words) showed that
Taverna must be used without the parameter “in-memory” activated for such large amount of
data or it will consume all PC memory resources.

D3.3 Second version (v2) of the integrated platform and documentation

31

The experiments with 5k documents took between 110 and 200 minutes to be run.
Unfortunately, it was always necessary to cancel execution for the workflow to finish. The
“waiting for data message” appears on a few executions (1/10) leaving Taverna without
knowing when the workflow ends and waiting for results that never arrive. We expect to solve
this problem in collaboration with Taverna support team.

Experiments with 10k documents also suffered from the non-finishing execution problem. They
took between 5 and 7 hours and were useful to find another situation that need to be solved.
Some Linux file systems can only have 32k folders in one directory. Soaplab server stores all
temporary data files in the same folder. If a workflow with three Soaplab web services deployed
on the same server is run with 10k input files there are going to be needed 30k folders. If there
were already some temporary files there the limit is really easy to be reached causing the
systematic failure of all new executions.

To solve this 32k limit Soaplab developers have been contacted to improve the temporary files
management. If there is not a solution soon a script to automatically erase temporary files when
the 32k limit is near will be developed and deployed.

6.4.4 Scenario 3: DCU
The 5k experiment has been run (several times) from a Taverna installed on a DCU PC
confirming that non-finishing workflow executions problem was a UPF PC problem. This
means that now PANACEA can handle the execution of 5k documents (aprox. 5M) all on the
same server (iula04.upf.edu) with a very demanding workflow with more than 15 simultaneous
processes.

6.5 Conclusions and future work
From the experiments it can be concluded that achieving high performance and handling
massive data is a very complex task. Developers are sometimes limited by the software tools
being used and its versions, the machine resources, etc.

Handling massive data requires hard work on all the aspects involved. Assigning enough
machine resources it’s not always easy due to the expensive prices of powerful servers.
However, it shows that with the sufficient economic resources more powerful machines can be
bought or virtual machines can be rent to achieve higher performances.

Another aspect that needs to be taken care of is the system maintenance. Updated versions of
the operating system and all the software involved can benefit performance. Compatibility
issues may arise and can reduce performance and force unpredicted errors. Installing different
versions and make several tests with a good report system can be very helpful and should be
done from now on.

As expressed on the article, “So you want high performance”, using XML for data transport (the
SOAP messaging system) and for data storage (the TO) has a price paid in lower performance.
Tomcat, Soaplab and Taverna need to be carefully parameterized for optimal results.

Network and users behaviour will always be unpredictable and tools should be robust to their
actions and changes.

D3.3 Second version (v2) of the integrated platform and documentation

32

For the future improvement of massive data handling in PANACEA it’s clearly important to go
on with the collaboration with Taverna and Soaplab support teams which has been fruitful so
far.

Tomcat and Soaplab should be tested in detail for memory leaks, performance, improved
logging system and temporary files management. In case of errors or bugs they should be
reported to their respective support teams and solutions should be designed. E.g. the system to
delete temporary files when near the 32k limit.

Also the deployed tools should be checked and studied for memory leaks: Particularly,
converters which are massively used and consume more resources than expected.

Reducing parallelization should also be tested. Taverna support team reported that is a very
stressful use for the services and for Taverna itself. Test with less parallelization or none at all
should be done and results compared. The last tests are being done with 15 concurrent processes
which is a lot for the iula04v virtual machine.

Further experiments will be done to test with 10k documents and the problem with Taverna
deployed at UPF PC will be addressed. Running the experiments from several locations will be
tested and more complex workflows with distributed tasks will tested as well.

In the end, it seems that massive data requirement will be fulfilled but it will require more effort
and hard work for service providers if we want to achieve more than 10k documents per
experiment.

7 GRAF
In this section the discussion about the new TO is presented. All partners presented ideas and
contributions which end up in a few proposals and options. Finally, it was decided to choose the
GrAF standard because some if its advantages.

Many tools outputs are not ready to be presented in a stand-off format. In this section we’re also
going to present the modifications needed to make tool outputs ready to be converted to a stand-
off format.

The GrAF section is presented with these topics:

 Stand-off analysis

 The GrAF format

 Preparing tools: output modification

 GrAF Converter

 Travelling object document path

7.1 Standoff analysis
Different options have been analysed to adopt one stand-off format to be used as TO. Improving
the original TO XCES was discarded because the aim is to adopt an already existing format (as

D3.3 Second version (v2) of the integrated platform and documentation

33

standard and widely used as possible). This format needed to use stand-off annotation and be as
flexible as possible due to the multiple in-house formats used by the tools.

ILC developed a study of the KAF21 format and the feasibility of using such format in
PANACEA. The study22 was very useful and brought much information and ideas to the
discussion. The report pointed out that KAF needed some adaptation before it could be used for
parallel corpora and it does not fulfil the complete flexibility requirement.

The Graph Annotation Format (Ide and Su-dermam, 2007) is the XML serialization of LAF
(ISO 24612, 2009). It can be seen as a flexible container for much different kind of annotations
making it a good option to adapt the numerous in-house formats used by the tools in
PANACEA. GrAF only specifies how to make annotations but not their “names” or their
content. It provides a logical framework rather than semantic.

Another advantage of GrAF is that it uses CES headers and that it’s compatible with cesAlign
documents already being used in TO1. Moreover, GrAF is being used by the American National
Corpus (ANC) and converters to use GrAF in UIMA and GATE can be found on their website.

7.2 The GrAF format
Using the GrAF schema files and examples found on the Mini-MASC23 corpus of the ANC a
GrAF model was build to be used as an example for PANACEA converter developers. This
example can be found in a ZIP file on this deliverable24.

A document represented in GrAF is divided in different files:

MAIN FILES:

 <doc-name>.anc: it’s an XCES header with provenance and general information. It
also has information about the location of the primary text file and all associated
annotation files.

 <doc-name>-original.txt: It contains the original document.

 <doc-name>-plain.txt: It contains only the text without HTML markup, etc.

 <doc-name>-layout.xml: It contains the HTML markup.

ANNOTATION FILES (A few examples since there can be various):

 <doc-name>-seg.xml: It contains basic segmentation of the original document like
paragraphs, etc.

21 KYOTO annotation framework

22 ILC Travelling Object 2 proposal / study (PANACEA-WP3-t22-ILC-TO2-aboutKAF.pdf on this
deliverable)

23 http://americannationalcorpus.org/MASC/Download.html

24 TO/GrAF/graf-example.zip

D3.3 Second version (v2) of the integrated platform and documentation

34

 <doc-name>-s.xml: sentence boundaries region annotations.

 <doc-name>-pos.xml: PoS annotations

 <doc-name>-chunk.xml: Chunker annotations

 <doc-name>-dep.xml: Dependency parser annotations

7.3 Preparing tools: output modification
Not all tools outputs can be represented in stand-off annotations. Tools which introduce changes
to the text segmentation must provide a reference between the new and the original in order to
create correct stand-off annotations. To this aim, tools like Freeling and the IULA tagger have
been modified making their outputs ready to stand-off annotations.

UPF developers modified the Freeling source code so for every token there’s a reference to the
characters in the original text. If the following text is processed:

cómetelos

With the original Freeling PoS tagging the result is:

come comer VMM02S0 1
te te PP2CS000 1
los los PP3MPA00 1

It can be seen that the segmentation of the original word “cómetelos” is different to “come te
los”. Thanks to the modified output with character reference to the original text the new
segmentation can be referenced to the original text.

come comer VMM02S0 1 0 4
te te PP2CS000 1 4 6
los los PP3MPA00 1 6 9

With the tools output modified and ready to be used to create stand-off annotation it was time to
design converters.

7.4 GrAF Converter
A GrAF converter has been developed at ILC based on the GrAF example, the TO1 crawled
data from ILSP and the the modified Freeling PoS tagging output.

The converter is a C++ tool which is divided in two main functionalities depending on input
process parameter: 1) Creating the skeleton and 2) converting a tools output to the GrAF
annotations format. The first part consists of creating the main files of a GrAF using an XCES
crawled document: the header, the layout, the original and plain. The second uses the Freeling
output to create the GrAF annotations and updates the GrAF header.

Both of the processes take one xml file as input parameter (the second one only for updating the
header file), so the converter use Xerces-C++ libraries which is a simple and easy to use XML
parser written in a portable subset of C++; also Xerces-C++ has intrinsic support for many type
of encoding including UTF-8 and ISO-8859-1. Because it did not interest us build the
document tree in memory and vice versa were interested in a simple and efficient access to an

D3.3 Second version (v2) of the integrated platform and documentation

35

XML document, our needs have been hijacked on event-based APIs (SAX is the best known
example of such an API).

The converter has been modified at UPF to handle the IULA tagger output and make it ready for
the stand-off annotations.

7.5 GrAF Travelling Object Document path
With the GrAF converter tool already developed it was deployed as a web service at UPF. In
fact the converter was deployed as two different web services which were presented in section
3.3.2. It was also developed a workflow (presented in section 4.3.10) which can help understand
the whole process from XCES crawled data to GrAF document with PoS tagging.

The graphic in section 14.4 shows the whole data path and shows all the files and input/output
parameters. It can be seen that crawled data is processed with the graf_converter to obtain the so
called skeleton (header, layout, original and plain). Afterwards, the plain text is used as input for
the processing tool. Finally the output of the processing tool (in most examples, Freeling) is
used together with the header to create an updated header, and the annotation files (pos,
segmentation and sentence). All this output documents combined are the final GrAF document
representation of the original Basic XCES document.

8 Other technologies
As explained in D3.2, UPF has deployed web services using Axis (for other projects). Most of
those web services have been migrated to Soaplab due to its maintenance advantages. The few
remaining web services will be further studied and may be also migrated.

However, Axis and other web services frameworks should be studied, as a fallback position or
to be used on very specific situations when Soaplab cannot fulfil all requirements. If there’re
resources enough it could be interesting to deploy some web services using REST (described in
D3.1) or developed using other frameworks. For example, a few web services using
authentication could be an interesting example for professional web service providers and for
the business models development.

9 Security
In a public infrastructure like the PANACEA platform many security issues arise. Having a lot
of public web services presents numerous vulnerabilities that must be addressed. In this section,
we’re going to explain some ways to make our servers more robust against massive usage,
hackers, etc.

9.1 Virtualization
The first option proposed and already being used by some partners is virtualization. Installing
all the software and doing all the maintenance for a server has a high cost. A hackers attack or a
malfunction may require the reinstallation of all the software; it may cause the loss of data, etc.

Virtualization lets the service provider to create a virtual machine (or many) inside a real
machine. The virtual machine can be stopped, run, rebooted, etc. These virtual machines are the

D3.3 Second version (v2) of the integrated platform and documentation

36

ones hosting the web services and the ones which may suffer problems due to its public access.
Thanks to the virtualization, if one machine has a problem, the service provider can easily turn it
off, restore a copy and reboot it.

This system also allows to separate web services in groups. Each group can be hosted in one
virtual machine. If one web service has a malfunction or it requires maintenance only its virtual
machine is affected, leaving the rest of virtual machines completely operational.

There are several software solutions for virtualization like vmware25, virtualbox26, KVM27, etc.
Some solutions are professional expensive solutions while others are free. UPF is using KVM to
host several virtual machines in one server. One of these machines hosts the UPF web services
and a new virtual machine is planned to host other web services.

Once a month, the virtual machines are automatically stopped and a full backup is created. The
experience has been successful so far although it must be taken into account that the real
machine hosting these virtual machines must be a considerably powerful server:

1. Fast hard drives : having one operating system (OS) reading and writing in one hard
drive requires a less fast hard drive than, for example, 6 OS reading and writing on that
same hard drive.

2. Memory: the total amount of memory must be divided between the real server and the
virtual machines.

3. Number of processors: For a good performance it’s necessary to have at least one
processor for each virtual machine and one for the real machine.

In the end, from the UPF experience, it can be said that using virtualization has been very useful
and it will continue being a good solution. Now there’s also the possibility to rent a virtual
server to host services. Amazon28 offers very flexible options to rent their virtual servers. This
kind of solution offers numerous advantages. For instance, there’s no need to learn how to use
the virtualization software which is complex. Even more, a high-tech company (or a company
with a lot of resources) will have the latest software solutions and will be able to benefit from
all the possibilities offered by the virtualization software. For example, complex virtualization
can automatically detect a growing number of requests and automatically turn-on several virtual
machines to fulfil this requests. Afterwards it will stop these virtual machines. This system
optimizes the use of the machine resources and helps the service provider to avoid worrying
about request peaks which are not easy to handle with simple virtualization solutions.

25 http://www.vmware.com

26 http://www.virtualbox.org

27 http://www.linux-kvm.org

28 http://aws.amazon.com/ec2/#pricing

D3.3 Second version (v2) of the integrated platform and documentation

37

9.2 Limiting Web Services
One way to protect from too many requests or abuses is to limit the amount of them. Ideally, it
would be nice to monitor “who” is making requests, “how many” requests is he/she doing,
“what” requests are being done.

There is sophisticated and expensive software to do all this monitoring and to block requests
from users making too much requests. This software requires high cost maintenance and is
usually used by a team of system administrators in charge to ensure the correct use of the web
services.

UPF developers contacted with the European Bioinformatics Institute (EBI29) due to its vast
experience as a web service provider in the bioinformatics field, its relation with myGrid and
that some of their web services are in fact, Soaplab web services. EBI has a strict fair share
policy for their users: there is a maximum requests per user policy, etc.

EBI support team reported us with some of the software used to monitor the use of their web
services and their users and also made some recommendations:

 Web load-balancer (Zeus ZXTM30): Request rate limitation for the web site. Specific
request rate limits for some heavily used services. Specific black-listing of IP addresses
from which badly behaved requests are coming.

 Batch queue system (Platform LSF 31): A fingerprint is generated per user and used to
regulate the number of concurrent jobs running per-user, excess jobs are queued.
Additionally resource limits are placed on jobs to ensure no one jobs hogs resources, for
example memory and run time limits.

 Application fram eworks: The tool service frameworks used include additional
methods for black-listing users and restricting the types of jobs which can be submitted.
Mostly this consists of restricting the amount of input (most of the services accept only
one input sequence for which there is often a size limit).

 Valid e-mail address: An important part of this is requiring that systematic users of the
web services have to provide a valid e-mail address, so in the event of problems, either
with the service or their usage, there is a way of getting in contact with them.

Some of these solutions are expensive professional solutions very well suited for EBI or other
service providers with many requests. However, at the actual stage of the PANACEA platform
and with the actual low number of users these solutions are too expensive (price and human).
Nevertheless this is valuable information for the future of the platform and for service providers
with growing demand.

29 http://www.ebi.ac.uk

30 http://www.zeus.com/products/load-balancer

31 http://www.platform.com/workload-management/high-performance-computing,
http://en.wikipedia.org/wiki/Platform_LSF

D3.3 Second version (v2) of the integrated platform and documentation

38

EBI support team also recommended limiting the size of the input data sent to web services.
DCU developed a technique for limiting web services not only the size but the amount of
concurrent running jobs. This work was presented in Section 3.1.5. DCU technique represents a
low cost solution very well suited for PANACEA web service providers and represents a good
start for limiting web services.

10 The previous evaluation
In D7.2 section 2.7 it was presented the “lessons learnt” from the first evaluation of the
platform. Different tasks and efforts have been done to improve the platform and will be
presented in this section.

1. In the lessons learnt it was pointed out that it was not easy to reach the Spinet web client
to test web services from the Registry. This usability problem has been solved by
adding a “Spinet link” in the main page for every Soaplab web service.

2. Service providers are encouraged to include as much detailed information about their
web services as possible. The registry has a very user-friendly interface to facilitate this
task. Also two disclaimers have been prepared regarding usage conditions which can be
used for all web service providers. These disclaimers were presented in section 2.4.3.

3. There have been prepared new manuals and specially videos which represent a very
useful tool. It has also been prepared a document listing all the relevant manuals and
tutorials which is very useful and has links to non-PANACEA documentation. For
example, mygrid has a particularly good Taverna tutorial which has been used for
PANACEA developers to learn how to build workflows. All this documentation was
presented in section 2.4.

4. It was necessary to have a place to find workflows. The PANACEA myExperiment
portal fulfils this requirement perfectly and it was presented on section 0. Users can
easily find example workflows, share their own workflows and files creating a
community that benefits from all its users contributions.

5. The Common Interface required more documentation than only what was documented
on D3.1. This necessary extra documentation was explained on section 2.4.1 and can be
found on the PANACEA website.

6. The PANACEA Registry has some improvements, as mentioned before as well much
more annotations done by the web service providers. The PANACEA Registry work
was presented in section 3.6.

11 Workplan updates
The workplan updates are listed and described in this section.

Web Services

D3.3 Second version (v2) of the integrated platform and documentation

39

WS-GR-1: Temporary files m anagement. This task was originally due to the first version of
the platform. It was postponed for t22 because it made more sense developing it together with
the massive data tests.

The Temporary files deletion system was presented in section 3.1.6 of this document. However,
during the massive data tests it was seen that this task cannot be considered closed. Massive
data has considerable development implications with the growing number of processed files and
number of experiments.

The 3rd version of the platform must have an adapted temporary files management system.

WS-GR-02: Provenance . While the provenance information stored in the headers of the
Travelling Object remains useful and being used in the workflows, the provenance regarding the
execution times, processes, etc. is still not easy to get. ILC developed a task to get that
provenance from the Taverna database. However, considering that new Taverna was supposed
to be released on May the task was postponed expecting considerable improvements on the
Taverna provenance usability. Due to the fact that Taverna 2.3.0 was released on August with
no time enough for a deep analysis this task is postponed. However, basic Taverna provenance
can still be obtained and copied from the graphical interface: execution time, iterations, time per
iteration, etc. which is usually enough.

Common Interfaces
WS-CI-02: Controlled vocabularies. The idea of this task was to have controlled vocabularies
for some specific situations during the CI definition if necessary. It was also considered as a
possible closed set of tags for the Registry metadata used to describe services. There has not
been this necessity so far therefore this task is postponed to the 3rd version of the platform in
case it is necessary.

Axis
All Axis tasks are deprecated and Axis and other frameworks for web services will be
considered fall back positions or used only in very specific situations. Soaplab has proven to be
useful and scalable.

Web Services alternatives
These tasks will be compacted as a one task with a specific framework for the 3rd version of the
platform in case there are enough resources (basically time).

Alternatives Test
Tests with grid technologies, UIMA or GATE have not been carried out since massive data tests
have consumed a lot of resources. These alternatives will be studied and tested in case
PANACEA needs it.

12 Conclusion and future work
The second version of the platform is working and it can be used. Service providers deployed
WP4 CAA, WP aligners, converters and other web services. The Registry and the PANACEA
myExperiment portal can be used to find and share web services and workflows. Improved
documentation and videos have been shared in the PANACEA website to assist new users. New

D3.3 Second version (v2) of the integrated platform and documentation

40

workflows have been developed to handle larger amounts of data and massive data solutions
have been implemented. Finally a new stand-off Travelling Object has been introduced to the
platform. GrAF format will be used for the new tools and workflows coming for the 3rd version
of the platform which require a stand-off format.

All tools are being used among partners and have proven to be useful and user friendly. Soaplab
is used by service providers to easily deploy their tools as web services and Tavern allows
developers to design complex workflows with a friendly graphical interface. The Registry and
myExperiment are being used and represent a perfect point of entry to the platform.

The platform needs to handle massive data are numerous and require a lot of focus and
resources (human and machine). From the service provider point of view maintenance becomes
a fundamental issue to have a good quality service. Tomcat, Soaplab, temporary files
management, etc. all need special care and to handle even more data it will require improved
parameterization and better scripts which take machine resources into account. Experiments
with 5k documents have been carried out successfully and larger amounts will soon be
considered.

The bug errors found during the massive data tests must be addressed. Service providers will be
required to carry a massive data test in their servers to detect Tomcat, soaplab, temporary files
management and Taverna problems. It will also be used to detect the maximum capacity of the
servers. It must be taken into account that the massive data tests were carried out with a very
stressful parallelization. Also running experiments from different locations (different Taverna
instances) will be tested.

Collaboration with Taverna and Soaplab support teams has been productive and is expected to
be helpful during the rest of development. All software support teams’ support is fundamental
when dealing with massive data. Using a non-optimal version of Tomcat, or some
incompatibility with java or precompiled packages has a huge impact on massive data
experiments. To this aim service providers should have a strict control of their software
versions, logs, be well informed about software updates and report problems as soon as possible
with all relevant information and logs.

The new and numerous web services to be deployed for the 3rd version of the platform as well as
their combination in workflows will require a considerable effort for all service providers.
Common Interfaces will have to be designed if necessary and collaboration from all partners
will ne fundamental to meet the schedule.

Massive data is still the most challenging aspect for WP3. Experiments with more than 5k
documents and more complex workflows will be addressed. Using the optimal software version
combination of all programs and improving the servers’ maintenance system will considerably
improve the capacity of servers and will help PANACEA handling massive data.

13 Bibliography
 [Biocatalogue] K. Belhajjame, C. Goble, F. Tanoh, J. Bhagat, K. Wolstencroft, R. Stevens, E.
Nzuobontane, H. McWilliam, T. Laurent, and R. Lopez, "BioCatalogue: A Curated Web Service Registry
for the Life Science Community" in Microsoft eScience conference, 2008.

D3.3 Second version (v2) of the integrated platform and documentation

41

[Deliverable D3.1] Poch, Marc, Prokopis Prokopidis, Gregor Thurmair, Carsten Schnober,
Riccardo Del Gratta, and Núria Bel. 2010. D3.1 - architecture and design of the platform.
Confidential deliverable, The PANACEA Project (7FP-ITC-248064).

[GrAF] Nancy Ide, Keith Surderman. 2007. “GrAF: A Graph-based Format for Linguistic Annotations”.

In Pro-ceedings of the Linguistic Annotation Workshop (June 2007), pp. 1-8.

[myExperiment] D. De Roure, C. Goble, and R. Stevens, "The Design and Realisation of the
myExperiment Virtual Research Environment for Social Sharing of Workflows," Future
Generation Computer Systems, vol. 25, pp. 561-567, 2008.

[Soaplab] M. Senger, P. Riceand T. Oinn. "Soaplab - a unified Sesame door to analysis tools
(2003)" In UK e-Science All Hands Meeting.

[Taverna] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn,
"Taverna: a tool for build-ing and running workflows of services.," Nucleic Acids Research,
vol. 34, iss. Web Server issue, pp. 729-732, 2006.

[Taverna] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover, C. Goble, A.
Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R. Stevens, A. Wipat, and
C. Wroe, "Taverna: lessons in creating a workflow environment for the life sciences,"
Concurrency and Computation: Practice and Experience, vol. 18, iss. 10, pp. 1067-1100, 2006.

14 Annex

14.1 Web Services Disclaimers

14.2 Usage conditions
These disclaimers can be used in any kind of documentation for a web service and are being
used in the “Usage conditions” metadata field of the PANACEA registry.

14.2.1 Temporary files deletion
Temporary files may be generated by the various processes for their needs
and operations.
Temporary files will not be used by anyone but the actual user of the input
data that generated them. This is part of our data protection policy aimed
at safeguarding the owner rights on the data travelling through the web
services.
Temporary files will be automatically deleted from the system after N days,
even if they are not accessible to anyone but the actual user.
It is the sole responsibility of the input provider to check and ensure
that (s)he has the right to use the input data provided to the platform.
No access or use of the temporary files will be allowed other than
estipulated in this disclaimer.

14.2.2 Fair Share Policy on Parallel Process Running
Users are kindly asked not to submit more than N processes/requests in
parallel. This is part of the fair share policy implemented so as to allow
all users to benefit from the web services offered by the PANACEA platform.
If this policy is not complied with in a way that prevents other users from
using the web services, users concerned may be prevented from submitting
processes/requests, their exceeding processes may be killed and they may be
black-listed for future use.

D3.3 Second version (v2) of the integrated platform and documentation

42

In the event of an exceptional need to use the platform in a manner not
covered by this disclaimer, users are kindly adviced to address the contact
point of the web service(s) required so as to study the possibility of
establishing an exceptional usage for those web services.

14.3 Workflow images

Figure 4: Panacea Common Interface validation for Soaplab web services

Figure 5: Merge list of errors to string

D3.3 Second version (v2) of the integrated platform and documentation

43

Figure 6: WORD freeling tagging and stylesheet

D3.3 Second version (v2) of the integrated platform and documentation

44

Figure 7: Freeling tagging for crawled data

D3.3 Second version (v2) of the integrated platform and documentation

45

Figure 8: Freeling to Desr - From text cleaned to text parsed

Figure 9: bilingual sentence alignment for crawled data

D3.3 Second version (v2) of the integrated platform and documentation

46

Figure 10: bilingual word aligner for crawled data

D3.3 Second version (v2) of the integrated platform and documentation

47

Figure 11: bilingual sentence alignment for crawled data EN EL

D3.3 Second version (v2) of the integrated platform and documentation

48

Figure 12: GrAF PoS tagging with Freeling for basicxces documents

D3.3 Second version (v2) of the integrated platform and documentation

14.4 From BasicXces to GrAF
This graphic shows the data path from Basic Xces data to Freeling or other tools processing and finally the resulting GrAF document.

GrAF

X.anc

Crawler
(ILSP)

- X.anc (1)

- X-original.txt

- X-plain.txt

- X-layout.txt

BasicXces 2
Graf-

skeleton

BasicXces
(TO1)

Freeling
PoS

Freeling
Dependency

Freeling 2
Graf

- X.anc (2)

- X-seg.xml

- X-pos.xml

- X-s.xml

Other tools

From BasicXces to GrAF

- X-original.txt

- X-plain.txt

- X-layout.txt

D3.3 Second version (v2) of the integrated platform and documentation

14.5 Taverna captures

Figure 13: Never finishing execution

D3.3 Second version (v2) of the integrated platform and documentation

D3.3 Second version (v2) of the integrated platform and documentation

Figure 14: errors burst

