

SEVENTH FRAMEWORK PROGRAMME
THEME 3

Information and communication Technologies

PANACEA Project
Grant Agreement no.: 248064

Platform for Automatic, Normalized Annotation and

Cost-Effective Acquisition
of Language Resources for Human Language Technologies

D3.4
Third version (v4) of the integrated platform

and documentation

Dissemination Level: Public
Delivery Date: December 2012
Status – Version: final
Author(s) and Affiliation: Marc Poch (UPF), Oliver Hamon (ELDA), Valeria Quochi

(ILC-CNR), Riccardo del Gratta (ILC-CNR), Antonio
Toral (DCU), Gregor Thurmair (LG), Prokopis Prokopidis
(ILSP) and Núria Bel (UPF)

Relevant Panacea Deliverables

D3.1 Architecture and Design of the Platform
D3.2 First version (v1) of the integrated platform and documentation
D3.3 Second version (v2) of the integrated platform and documentation
D7.2 First evaluation report. Evaluation of PANACEA v1 and produced resources
D7.3 Second evaluation report. Evaluation of PANACEA v2 and produced resources

 D3.4 Third version (v4) of the integrated platform and documentation

This document is part of technical documentation generated in the PANACEA Project, Platform
for Automatic, Normalized Annotation and Cost-Effective Acquisition (Grant Agreement no.
248064).

This documented is licensed under a Creative Commons Attribution 3.0 Spain License. To view
a copy of this license, visit http://creativecommons.org/licenses/by/3.0/es/.

Please send feedback and questions on this document to: iulatrl@upf.edu

TRL Group (Tecnologies dels Recursos Lingüístics), Institut Universitari de Lingüística
Aplicada, Universitat Pompeu Fabra (IULA-UPF)

D3.4 Third version (v4) of the integrated platform and documentation

i

Table of contents
1 Introduction ... 5

2 Panacea Platform definition (version 3) .. 5

2.1 Tools / Software / Middleware .. 6

2.1.1 Soaplab .. 6

2.1.2 Biocatalogue .. 6

2.1.3 Taverna .. 6

2.1.4 myExperiment ... 6

2.2 Interoperability .. 6

2.2.1 Common interfaces ... 6

2.2.2 Travelling Object Format .. 6

2.3 Documentation: manuals, guidelines, articles ... 7

2.3.1 Common Interface documentation .. 7

2.3.2 Travelling Object documentation .. 7

2.3.3 Web services documentation ... 7

2.3.4 Workflows documentation .. 8

2.3.5 Frequently asked questions ... 8

2.3.6 Panacea tutorial ... 8

2.3.7 Articles, publications, etc. ... 9

3 Web Services ... 10

3.1 New input interface: inputIsURLlist .. 10

3.2 Soaplab patches ... 11

3.2.1 output-size-limit+spinet (Minimum) ... 11

3.2.2 filenames+output-size-limit+spinet (Optional) ... 11

3.3 Deployed web services .. 11

3.4 WP3 web services ... 12

3.4.1 Grafconverter_dependency ... 12

3.4.2 Converter Freeling 2 DESR .. 12

3.4.3 grafconverter_dependencyCoNLL (ILC) .. 12

3.4.4 grafconverter_chunkingFreeling ... 12

3.4.5 Provenance_collector .. 12

3.4.6 Anonymizer ... 12

3.4.7 tmx_shuffling .. 13

D3.4 Third version (v4) of the integrated platform and documentation

ii

3.5 WP4 Web Services .. 13

3.5.1 Focused Monolingual Crawler .. 13

3.5.2 Focused Bilingual Crawler .. 13

3.5.3 ILSP dependency parser .. 13

3.5.4 TPC_Desr_dependencyparser_it ... 13

3.5.5 Freeling 3 web services ... 13

3.5.6 MALT dependency parser ... 14

3.5.7 tpc_rasp ... 14

3.6 WP5 Web Services .. 14

3.6.1 biling_dict_extract ... 14

3.6.2 LT-P2G ... 14

3.6.3 LT-Xfr ... 14

3.7 WP6 Web Services .. 14

3.7.1 noun_classification_filter .. 14

3.7.2 dt_noun_classifier_location .. 14

3.7.3 dt_noun_classifier_human .. 15

3.7.4 naive_bayes_classifier ... 15

3.7.5 estimate_bayesian_parameters .. 15

3.7.6 dt_noun_classifier_eventive .. 15

3.7.7 create_weka_noun_signatures ... 15

3.7.8 compute_p_cue_classes_from_weka .. 15

3.7.9 compute_p_cue_class .. 15

3.7.10 tpc_subcat_inductive ... 15

3.7.11 SubcategorizationFramesExtractor_IT .. 15

3.7.12 estrattore_scf_lang_indip .. 16

3.7.13 MultiwordExtractor_IT ... 16

3.7.14 countngrams .. 16

3.7.15 lmf_merger .. 16

3.7.16 merge_lmf_files .. 16

3.7.17 CQP_index .. 16

3.7.18 CQP_query .. 16

4 The registry: sharing web services .. 17

4.1 Test scripts .. 17

4.2 Service API ... 17

4.3 Language category .. 17

D3.4 Third version (v4) of the integrated platform and documentation

iii

4.4 Hostname grouping ... 18

4.5 Statistics .. 18

4.6 Autocomplete search ... 18

4.7 Web service country .. 18

4.8 Usage within Taverna .. 19

4.9 Conclusion ... 19

5 Workflows ... 19

5.1 Taverna .. 19

5.1.1 Polling ... 20

5.1.2 Retries ... 21

5.1.3 Parallelization .. 22

5.1.4 Taverna 2.4 .. 23

5.1.5 Taverna 2.4 Server .. 24

5.2 Workflows ... 24

5.2.1 GrAF Dependency Parsing Freeling for basicxces documents 24

5.2.2 GrAF Dependency parsing with Vocabulary Analysis 24

5.2.3 GrAF PoS tagging with CORPUS analysis ... 24

5.2.4 Bilingual Sentence Alignment with Hunalign into TMX 25

5.2.5 Sentence alignment for plain text documents with BSA and TMX output 25

5.2.6 Temporary file append example .. 25

5.2.7 Plain text to dependency parsing ... 25

6 MyExperiment: sharing workflows ... 25

6.1 Usage within Taverna .. 25

6.2 Shared workflows .. 25

7 Complementary tools .. 26

7.1 Web Service Statistics ... 26

7.1.1 Motivation ... 26

7.1.2 Development ... 26

7.2 Storage System .. 26

7.2.1 Motivation ... 26

7.2.2 Development ... 27

8 Large data .. 29

9 Interoperability .. 31

9.1 Common Interfaces ... 31

9.1.1 WP3 new Common Interfaces ... 32

D3.4 Third version (v4) of the integrated platform and documentation

iv

9.1.2 WP4 new Common Interfaces ... 32

9.1.3 WP5 new Common Interfaces ... 32

9.1.4 WP6 new Common Interfaces ... 32

9.2 Travelling Object ... 33

9.2.1 XCES ... 33

9.2.2 GrAF ... 33

9.2.3 LMF ... 33

9.2.4 CoNLL .. 33

10 Other technologies and projects .. 34

10.1 Relations with other projects ... 34

10.1.1 META-SHARE ... 34

10.2 Other technologies ... 35

11 Security ... 35

11.1 Web Services Authentication .. 35

11.2 Web Services Data Encryption.. 36

12 The previous evaluation .. 37

13 Workplan updates .. 38

14 Conclusion and future work .. 39

15 Bibliography .. 43

16 Annex .. 44

16.1 Registry list of deployed web Services ... 44

16.2 PANACEA Myexperiment list of shared workflows .. 49

16.3 Workflow images .. 51

16.4 Usage conditions ... 57

16.4.1 Temporary files deletion ... 57

16.4.2 Fair Share Policy on Parallel Process Running ... 57

D3.4 Third version (v4) of the integrated platform and documentation

5

1 Introduction
The 3rd version of the platform is working and WP4, WP5 and WP6 tools are deployed as web
services. Common Interfaces (CI) and Travelling Object (TO) for new WP5 and WP6 have been
devised.

The Registry, deployed for the 1st version of the platform, is operational and has been updated
with some new features. It has now more than 120 registered web services. The PANACEA
myExperiment portal was deployed to share workflows among users who can then execute
those workflows with Taverna. Massive data solutions were developed during the second
development cycles that have been used since then. New statistics, storage and security features
have been addressed and studied. This deliverable will present all the work developed for the
third version of the platform and its documentation.

2 Panacea Platform definition (version 3)
The Panacea Platform is defined in this section considering the technological options chosen in
the design phase and according to deliverable D3.1.

The Panacea Platform definition will be divided in two parts: a Stable Definition and a
Variable Definition. The Stable Definition is an abstract description and will be used in all
Panacea platform versions. On the other hand, the Variable Definition is used to establish the
Panacea Platform characteristics and it may have differences between Panacea Platform
versions.

Stable Definition: Panacea platform is an interoperability space based on tools, guidelines, a
common interface definition, and a “travelling Object” specification.

Variable Definition:

Panacea Platform Version 3:
Tools: Taverna1, BioCatalogue2, Soaplab3. myExperiment4, Statistics System, Storage
system
Common Interface (CI): defined in deliverable D3.1 and its updates (v1.3).
Travelling Object (TO): XCES, GrAF5, LMF6, CoNLL7.
Documentation: Manuals, guidelines, videos, etc.

1 http://www.taverna.org.uk

2 http://www.biocatalogue.org

3 http://soaplab.sourceforge.net/soaplab2

4 http://www.myexperiment.org

5 The Graph Annotation Format (Ide and Su-dermam, 2007)
6 Lexical Markup Framework

7 Conference on Computational Natural Language Learning format

D3.4 Third version (v4) of the integrated platform and documentation

6

(New tools or specifications with respect to the platform version 2 are underlined)

The following sections are going to list and describe these specifications or reference another
document.

2.1 Tools / Software / Middleware

2.1.1 Soaplab
Soaplab is the wrapper that allows service providers to easily deploy command line tools as web
services. The 3rd version of the platform uses Soaplab version 2.3.2 with some PANACEA
improvements to help with larger files, long lasting executions and usability (Section 3).

2.1.2 Biocatalogue
Biocatalogue was deployed and modified to be the PANACEA registry for the first version of
the platform. It has proven to be useful and user friendly. For the third version of the platform it
has been modified to add some extra features (Section 4).

2.1.3 Taverna
Taverna is the workflow editor for the PANACEA platform. For the platform version 3 the used
Taverna version is Taverna workbench 2.4.0 which has been tested by PANACEA developers
before its release. This new version is much more robust and makes it possible to run
experiments with larger amounts of data (Section 5).

2.1.4 myExperiment
MyExperiment is a social network to share workflows and other scientific objects. It was
deployed by ELDA for the 2nd version of the platform for users to share and find workflows and
it’s presented as the “PANACEA myExperiment portal” (http://myexperiment.elda.org).

2.2 Interoperability

2.2.1 Common interfaces
As explained in D3.1 and D3.2 Common Interfaces (CI) were designed for different kind of
tools and documented in several ways to facilitate its use.

CIs have been extended for new kind of services and functionalities. The latest version of the
CIs can be found on this deliverable and on the documentation section of the Panacea website8.

2.2.2 Travelling Object Format
The first Travelling Object (TO) has been used to transport data between components in
PANACEA up to PoS tagging annotation for WP4 tools. It was documented in deliverable D3.1
Section 6.1. This first TO was based on the XCES format and it represented the minimum
common data format used by the tools.

A new Format was introduced to be used in specific situations (e.g. for chunking and
dependency annotations) as TO during the 2nd phase of development. The adopted stand-off
format is the GrAF standard. Converters, web services and workflows have been developed for
some scenarios to work with GrAF.

8 http://panacea-lr.eu/en/info-for-professionals/documents

D3.4 Third version (v4) of the integrated platform and documentation

7

For the 3rd version of the platform and the new WP5 and WP6 web services which provide
dictionaries as a result it was necessary to find a more adequate data format than the TOs used
before. LMF standard has been chosen as the data format for dictionaries to be used and it will
be documented in deliverables D5.4 and D6.2.

2.3 Documentation: manuals, guidelines, articles
This section is devoted to list and describe the documentation developed for the 3nd version of
the platform.

2.3.1 Common Interface documentation
The Common Interface documentation can be found on the Panacea website (documents8
section of info for professionals) and in this deliverable zip file. It consists of four documents:

 types1.3.xsd: the types file.

 PANACEA-CI_documentation_v01.3.pdf: documentation for the service providers
about the CI. It contains the basic and necessary information for the service providers.

 types1.3.pdf: very detailed document about the CI.

 Types1.3 Web documentation: web version of the very detailed documentation.

2.3.2 Travelling Object documentation
Platform version 3 makes use of different TO. New documentation about XCES and GrAF has
been posted on the PANACEA documentation web page8 (it is also included on this
deliverable). The documentation includes reports, examples, schemas, etc. according to every
TO format.

The new documentation includes:

 PANACEA Travelling Object 1: XCES Documents

 PANACEA Travelling Object 1: XCES Schema files

 PANACEA Travelling Object 1: XCES xslt stylesheets

 PANACEA Travelling Object 2: GrAF documents

2.3.3 Web services documentation
Web services can be documented in many different ways. For Panacea platform web service
providers using Soaplab must document their web services using the Soaplab metadata ACD9
file and the registration process at the registry. This is the minimum amount of documentation
all Web Service Providers must supply.

The ACD file is used to describe the web service: the script to be run, the parameters, help
messages, etc. Thus, the web service providers are encouraged to provide as precise and
descriptive information as possible to help web service users.

9 ACD: Ajax Command Definition.

D3.4 Third version (v4) of the integrated platform and documentation

8

When a web service is registered most metadata are extracted automatically by the registry and
presented to the users. However, there can be an extra process of documentation called
annotation. Web service providers can “categorize” the web service, add tags, fill in some forms
with further metadata, etc. A better annotated web service will be used by more users if it’s
easier to find (the BioCatalogue website has more than 1000 web services), its functionality is
better understood and its technical aspects are better described.

Two disclaimers regarding usage conditions were written in collaboration with WP2 for the 2nd
version of the platform and shared among partners. These disclaimers are being used in the
“usage conditions” field which is one of the metadata fields used to describe a web service in
the PANACEA registry. Both disclaimers can be found on Section 16.4 “Usage conditions”
(page 57).

During the period of reference, there has been a documentation task by all web service providers
to annotate the web services in the Registry. Links to example input and output data are used in
this process to facilitate the user the first steps while using the web services.

2.3.4 Workflows documentation
All workflows documentation can be found on the PANACEA myExperiment portal. Each
uploaded workflow has its own metadata and graphic representation (low and high resolution
pictures). Description field is used to give a general overview of the workflow and tags are used
by the search mechanism.

Most workflows are also documented on the respective deliverables.

2.3.5 Frequently asked questions
A FAQs list has been updated for fast access to some typical questions, tips and tricks. It can be
found in the Panacea website (FAQs10 section of info for Professionals). It is based on
PANACEA developers experience and some real users’ feedback.

2.3.6 Panacea tutorial
The PANACEA tutorial has been updated and now includes different documents. All
documents can be found on this deliverable and the last updated are posted on the tutorials page
of the PANACEA website (http://panacea-lr.eu/en/tutorials/). Feedback from users was taken
into account when developing these tutorials.

The first document11 is a documentation index. It lists all the relevant documentation for
PANACEA. It lists all tutorials and guidelines made by PANACEA partners and other manuals
found on the internet that can be helpful for the user.

The second document12 is the general PANACEA tutorial which is an updated version of the
previous one released for the platform version 3.

10 http://www.panacea-lr.eu/en/info-for-professionals/faqs/

11 PANACEA-Platform_documentation_index_v3.0

12 PANACEA-tutorial_v3.0

D3.4 Third version (v4) of the integrated platform and documentation

9

Afterwards, there are two specific tutorials focused on Soaplab13 and Taverna14 usage for
PANACEA version 3.

Soaplab tutorial includes all the relevant information for platform version 3 and its content is
presented as follows:

 Platform version 1

o Technical description summary

o Describing your command line tool: Metadata

o Deployment and configuration

o Test your web service: Spinet web client

o Clients for Soaplab

 Platform version 2

o Bug: Tomcat 7 and Soaplab 2.3.1 Spinet (Solved)

o Soaplab output size limit patch

o Soaplab web services limits

 Platform version 3

o Soaplab Version

o Soaplab Spinet link patch

For the third version of the platform, a few new video tutorials have been prepared and posted
on the tutorials page (http://panacea-lr.eu/en/tutorials/). These videos can be very helpful for
users because they show the PANACEA platform live.

Videos are recorded in High Definition (HD) and it’s recommended to see them in full screen.

2.3.7 Articles, publications, etc.
This is a list of PANACEA articles, papers etc.:

 Towards a User-Friendly Platform for Building Language Resources based on
Web Services. Presented at LREC 2012 [with WP7]

 Language Resources Factory: case study on the acquisition of Translation
Memories. Demo presented at EACL 2012 [with WP5]

13 PANACEA-Soaplab-tutorial_v3.0

14 PANACEA-Taverna-tutorial_v3.0

D3.4 Third version (v4) of the integrated platform and documentation

10

 Efficiency-based evaluation of aligners for industrial applications. Submitted at
EAMT 2012 [with WP5]

 Integrating/Interchanging NLP tools in a distributed environment: a case study
chaining Freeling to the DESR parser. LREC 2012

3 Web Services
Web services can be written from scratch using different protocols and programming
frameworks. There are example codes, plugins for IDE (integrated development environment)
to develop web services. Using these IDEs the developer can program for every web service the
necessary features to make it work: wsdl file, input and output parameters, its validations,
temporary files management, data conversion tasks, and calls to the NLP tool being deployed as
a web service, etc.

Another way to proceed is to integrate all the necessary code for a web service in a piece of
software called wrapper. This code is reused for every web service being deployed and is used
to wrap an already existing NLP tool. This approach makes it much easier to deploy a new tool
and facilitates the reuse of the code. CLAM15 (Computational Linguistics Application Mediator)
is a Python tool wrapper that can be used to deploy NLP tools as REST web services.

Soaplab has been used as a wrapper to deploy tools as web services for the three development
cycles of the project. It has proven to be very useful, robust and with features that made it
compatible with the large data requirements. However, a few improvements and bug fixes have
been developed by PANCEA developers to improve usability, performance and throughput.

Soaplab allows WSPs to easily deploy AXIS 1 and JAX-WS web services at the same time.
Both protocols are SOAP implementations and are commonly used standards. Some partners are
deploying their web services without Soaplab and are still able to use them in workflows and
together with Soaplab.

3.1 New input interface: inputIsURLlist
For the previous versions of the platform input data had two basic interfaces: direct data and
reference data. Direct data was used for small amounts of data, for tests and it is very useful in
Spinet for users to directly fill in data. On the other hand, reference data allows sending data to
the web service using a URL. This is very important to reduce network usage and memory
footprint and it’s the recommended option when processing a lot of data (a lot of files or large
files).

However, these two interfaces do not cover all the scenarios. For example, there are web
services that produce a single output for an undetermined set of inputs (data files). With the
previous interfaces the only way to do that was to join all input data files in a single file and
then call the web service.

To fix this situation and add some extra flexibility to the available interfaces an optional
parameter has been added to some web services. This optional parameter is called

15 http://ilk.uvt.nl/clam/

D3.4 Third version (v4) of the integrated platform and documentation

11

inputIsURLlist. This Boolean parameter once set to “True” makes the Web service consider the
input a list of URLs. Now the user can send a list of URLs using this parameter the web service
will download and process the whole set of files.

For example, this optional parameter has been implemented in the CQP_index web service
(Section 3.7). This web service implements the IMS Open Corpus Workbench (CWB) tool and
is used to index a corpus that can be presented as a set of files. This web service has been
successfully used in workflows for WP6 making it possible to index large corpora.

http://registry.elda.org/services/203

3.2 Soaplab patches

3.2.1 output-size-limit+spinet (Minimum)
This patch contains the spinet link improvement and the output size limit. These two features
were both implemented for the 2nd version of the platform (Section 3.1 Deliverable 3.3).

Thanks to some tests it was noticed that Soaplab sometimes downloads input files twice. We
added a validation to avoid unnecessary downloads.

http://myexperiment.elda.org/files/8

3.2.2 filenames+output-size-limit+spinet (Optional)
This patch contains the previous patch plus a change in the outputs file names.

All web service calls with “input_urls” with file names shorter than 40 chars will use that name
as the output name. When we process urls like http://somehost.com/somename.xml the outputs
will be somenameXXXXX. This will allow us to keep the name of the original input data file and
simplify the naming process. This simplification will allow us to simplify some workflows and
components while keeping the same quality and usability for the user.

http://myexperiment.elda.org/files/9

3.3 Deployed web services
The list of deployed web services is presented in this section and some relevant web services for
Panacea platform version 3 presented.

The complete list of web services registered at the PANACEA registry can be found at Section
16.1.

There are web services for 17 different languages including (the number of WS able to process
a language is between parenthesis): Arabic (2), Asturian, Bable (11), Catalan, Valencian (19),
Czech (1), English (39), French (7), Gallegan (12), German (15), Greek, Modern (1453-) (9),
Irish (1), Italian (12), Portuguese (9), Russian (4), Spanish (26) and Welsh (3).

There are web services classified in 21 different categories: Alignment (8),
Chunking/Segmentation (3), Corpus Processing (14), Corpus Workbench (2), Crawling (4),
Format Conversion (27), Indexing (1), Language Guessing (1), Lexicon/Terminology
Extraction (13), Machine Translation (5), Management (1), Morphological Tagging (4),
Morphosyntactic Tagging (12), Named Entity Recognition (3), Querying (3), Statistics Analysis

D3.4 Third version (v4) of the integrated platform and documentation

12

(7), Stemming/Lemmatization (9), Syntactic Tagging (10), Terminology Management (1), Text
Mining (1) and Tokenization (11).

3.4 WP3 web services
These are new web services from WP3: format converters, etc.

3.4.1 Grafconverter_dependency
After the deployment of the Grafconverter_skeleton and Grafconverter_postagging (Section
3.3.2 from D3.3) the GrAF converter for the dependency parser output data has been deployed
as a Web Service.

http://registry.elda.org/services/197

3.4.2 Converter Freeling 2 DESR
It converts Freeling output format (POS-tags and morphological-tags including) to COnLL
format.

http://registry.elda.org/services/213

3.4.3 grafconverter_dependencyCoNLL (ILC)
It converts a dependency annotated Conll text into GrAF (used for the output of the DESR
parser).

http://registry.elda.org/services/254

3.4.4 grafconverter_chunkingFreeling
Converts from the native Freeling format for the chunking module for Spanish to GrAF.

http://registry.elda.org/services/260

3.4.5 Provenance_collector
Workflows with XCES and GrAF outputs collect provenance in the header of each XCES and
GrAF file respectively. For other situations this web service can be used to collect the headers
of input files, the workflow name and link to myExperiment, the processors involved, etc.

http://registry.elda.org/services/253

There is an example workflow on http://myexperiment.elda.org/workflows/74

3.4.6 Anonymizer
The anonymizer web service can be used to substitute proper nouns with tags. This process
anonymizes an input text by eliminating any person, place, corporation, etc. name.

This web service automatically calls the Freeling3 web service and makes use of its Named
Entity Recognition tool to detect proper nouns. It is based on a Python script and it show the
interoperability between standard web services (Freeling3 Soaplab web service is a JAX-WS
and Axis1 web service) and most commonly used programming languages and its libraries.

http://registry.elda.org/services/252

D3.4 Third version (v4) of the integrated platform and documentation

13

3.4.7 tmx_shuffling
This web service is used to scramble the order of the translation units in tmx files. The goal is to
make it difficult to obtain the original text. The input size limit is 100 MB.

http://registry.elda.org/services/259

3.5 WP4 Web Services
All WP4 web services deployed and ready to be used in the platform are reported on deliverable
D4.4. Some updates and improvements will be explained on D4.5. Some WS coming from WP4
are listed here:

3.5.1 Focused Monolingual Crawler
The Focused Monolingual Crawler is a component for acquiring domain-specific corpora in a
target language.

http://registry.elda.org/services/160

3.5.2 Focused Bilingual Crawler
The Focused Bilingual Crawler (FBC) integrates the Focused Monolingual Crawler and a
module for detecting pairs of parallel documents rich in textual content.

http://registry.elda.org/services/127

3.5.3 ILSP dependency parser
Dependency parser for Greek texts deployed as a web service.

http://registry.elda.org/services/178

3.5.4 TPC_Desr_dependencyparser_it
DeSR is a shift-reduce dependency parser for Italian Language.

http://registry.elda.org/services/210

3.5.5 Freeling 3 web services
Freeling was deployed in previous versions of the platform as different web services. Freeling 3
has also been deployed as different web services according to the task:

Tokenization: http://registry.elda.org/services/238

Sentence splitting: http://registry.elda.org/services/239

Morphosyntactic Tagging: http://registry.elda.org/services/236

PoS tagging: http://registry.elda.org/services/237

Syntactic Tagging: http://registry.elda.org/services/241

Dependency parsing: http://registry.elda.org/services/240

D3.4 Third version (v4) of the integrated platform and documentation

14

3.5.6 MALT dependency parser
MaltParser is a system for data-driven dependency parsing, which can be used to induce a
parsing model from treebank data and to parse new data using an induced model. This web
service is deployed only for Spanish.

http://registry.elda.org/services/249

3.5.7 tpc_rasp
Runs the RASP system, distributed by http://ilexir.co.uk/applications/rasp/download/.

http://registry.elda.org/services/222

3.6 WP5 Web Services
WP5 new web services for “bilingual term extraction” and “transfer lookup” will be listed and
presented in D5.4.

3.6.1 biling_dict_extract
It extracts bilingual dictionaries from phrase tables in factor model format.

http://registry.elda.org/services/247

3.6.2 LT-P2G
extracts term and glossary entries from phrase tables. Input: a phrase table, source language,
target language. Output: a list of terms (lemma and POS) and their translations (lemma and
POS).

http://registry.elda.org/services/255

3.6.3 LT-Xfr
This service takes as input: source language, target language, inputfile. Input file consists of
records of <lemma>. Service returns the best translation for this context: <lemma>. Works for
de>en only.

http://registry.elda.org/services/256

3.7 WP6 Web Services
There are several new web services from WP6.Those web services will be described in detail in
D6.2 however a few new web services which were necessary for WP6 are presented here:

NOUN CLASSIFICATION

3.7.1 noun_classification_filter
Given a LMF file with nouns classified with a score, filters elements based on a threshold.

http://registry.elda.org/services/246

3.7.2 dt_noun_classifier_location
Given a part of speech tagged text, this webservice performs the classification of nouns as
belonging or not belonging to the given class, in this case, locative nouns.

http://registry.elda.org/services/244

D3.4 Third version (v4) of the integrated platform and documentation

15

3.7.3 dt_noun_classifier_human
Given a part of speech tagged text, this webservice performs the classification of nouns as
belonging or not belonging to the given class, in this case, human nouns.

http://registry.elda.org/services/243

3.7.4 naive_bayes_classifier
This webservice performs traditional Naive Bayes classification of instances given in a weka
file.

http://registry.elda.org/services/229

3.7.5 estimate_bayesian_parameters
Given a training set encoded as vectors of cue (or feature) occurrences, this web service
estimates the parameters P(cuei|class): the probability of seeing each cue as a member or non-
member of the class, using Bayesian inference.

http://registry.elda.org/services/228

3.7.6 dt_noun_classifier_eventive
Given a part of speech tagged text, this webservice performs the classification of nouns as
belonging or not belonging to the given class, in this case, eventive nouns.

http://registry.elda.org/services/227

3.7.7 create_weka_noun_signatures
Creates signatures in weka format for the given nouns or for all nouns in corpus.

http://registry.elda.org/services/226

3.7.8 compute_p_cue_classes_from_weka
Calculate P(cue|class): probability of seeing a linguistic cue given a lexical class.

http://registry.elda.org/services/225

3.7.9 compute_p_cue_class
Palculate P(cue|class): probability of seeing a linguistic cue given a lexical class.

http://registry.elda.org/services/224

SUBCATEGORIZATION FRAME INDUCTION

3.7.10 tpc_subcat_inductive
Inductive acquisition of subcategorization frames from parsed text.

http://registry.elda.org/services/223

3.7.11 SubcategorizationFramesExtractor_IT
The module takes a dependency parsed corpus in Italian as input (in CONNL format), collects
all subcategorization frames for a list of verbs (when no input is present it retrieves all verbs)
and filters them by statistical significance.

D3.4 Third version (v4) of the integrated platform and documentation

16

http://registry.elda.org/services/212

3.7.12 estrattore_scf_lang_indip
This is a language-independent SCF acquisition service.

http://registry.elda.org/services/250

MULTIWORD EXPRESSION INDUCTION

3.7.13 MultiwordExtractor_IT
The module takes a dependency parsed corpus in Italian as input (in CONNL format), collects
all cooccurring word pairs (given a pair of PoS tags to search for and a window), filters them by
statistical significance and retrieves the intervening pattern.

http://registry.elda.org/services/211

3.7.14 countngrams
Count function from Ted Pedersen's Ngram Statistics Package (used to identify word Ngrams
that appear in large corpora using standard tests of association such as Fisher's exact test, the log
likelihood ratio, Pearson's chi-squared test, the Dice Coefficient, etc.).

http://registry.elda.org/services/184

LEXICAL MERGER (MORE SERVICES TO BE REGISTERED IN T32)

3.7.15 lmf_merger
This service merges two lexicons in LMF format.

http://registry.elda.org/services/251

3.7.16 merge_lmf_files
Given two LMF files, this webservice merges them into a single LMF file.

http://registry.elda.org/services/245

CORPUS WORKBENCH

3.7.17 CQP_index
CQP indexer Web service Based on the IMS Open Corpus Workbench (CWB). It can be used to
index a corpus (a file or set of files). The output is a “corpus id” that can be used to make CQP
queries using the CQP_query web service.

http://registry.elda.org/services/203

3.7.18 CQP_query
CQP query Web service based on the IMS Open Corpus Workbench (CWB). Given an already
indexed corpus (corpus id) it allows the user to run CQP language queries.

http://registry.elda.org/services/204

D3.4 Third version (v4) of the integrated platform and documentation

17

4 The registry: sharing web services
Several modifications have been made on the Registry with respect to version 2: test scripts,
service API, language category, hostname grouping, statistics, auto complete search, web
service country and usage within Taverna. They are described in the following sections.

4.1 Test scripts
Test scripts are Perl, Python or Ruby scripts used to monitor the status of a service, regarding a
specific sample processed through the web service. Therefore, it can also help users to know the
usage of the service using this sample. An example of such a test script can be found at
http://registry.elda.org/services/99#test-scripts.

For security reasons, the test scripts are launched manually on the server side, by an
administrator. Indeed, no one knows what can be included in the code of the scripts. To run the
tests on the server side, a list of test scripts is built, then they are imported, checked and finally
run. The results are then directly added to the database and visible on the web service page
(http://registry.elda.org/service_tests/331 for the previous example, for instance).

4.2 Service API
In this cycle, we checked that an API was available to use the web services directly from
another application (e.g. developed in Perl, Python Java, etc.). Documentation is already
provided by the developers of the BioCatalogue that is quite complete and comprehensive
(http://www.biocatalogue.org/wiki/doku.php?id=public:api). In fact, the API is already used
within Taverna, but the functionality can be easily tested with the help of a simple command
line tool such as “curl”. For instance,

curl -i -H "Accept: application/xml" http://registry.elda.org/services.xml

provides the XML descriptions of the web services currently in the registry,

curl -i -H "Accept: application/xml" http://registry.elda.org/categories.xml

provides the XML descriptions of the categories currently in the registry, and

curl -i -H "Accept: application/xml" http://registry.elda.org/search.xml?q=freeling

provides the results of the search “freeling” (i.e. the services that contain the term in that case).

4.3 Language category
One of the main functionality available now in the Registry is the language category. Indeed, it
is now possible for the providers to annotate their web services with information about the
languages for which the web service can be run (one or several languages), or with a “language
independent” tag.

In the Registry interface, the list of languages currently available in the Registry is listed at the
same level of the service categories. On 13-06-2012, 17 languages are listed in the Registry, the
main categories being English (39), “language independent” (37), Spanish/Castilian (26),
Catalan/Valencian (19) and German (15).

D3.4 Third version (v4) of the integrated platform and documentation

18

4.4 Hostname grouping
Providers can also group different hostname under a same provider name (see for instance
http://registry.elda.org/service_providers/20#hostnames). This must be done by an administrator
of the Registry, who is able either to merge two or more hostnames or .to move a hostname
from a provider account to another. More than having all the web services of a provider under a
same name, it also helps to have a similar description, website and contact info of the provider.

4.5 Statistics
So as to get statistics about the usage of the Registry, a Google Analytics16 tracker has been set
up in the Registry.

4.6 Autocomplete search
To help users to look for web services, an autocompletion of the search is now proposed: as
soon as three letters are added to the search box, a list of suggestions is displayed.

Figure 1. Screenshot of the autocomplete search.

This list is automatically updated daily.

4.7 Web service country
At the end of the second cycle, it appeared that some services were flagged with a wrong
country (e.g. Italian instead of German). In fact, when a web service is registered, an IP
geolocation is made using the website http://www.hostip.info (from the HostIP project).

It means that for a web services to be properly located into the Registry, the IP of the provider
must correspond to his/her city and country in the HostIP database. This is doable from their
home page and rather intuitive and fast.

16 http://www.google.com/intl/en/analytics/index.html

D3.4 Third version (v4) of the integrated platform and documentation

19

Figure 2. Screenshot of the website hostip.info with the IP location of the nlp.islp.gr server.

4.8 Usage within Taverna
It is possible to use the Registry within Taverna directly, without any plugin installation. In fact,
only the service catalogue setting has to be changed (in the menu File→Preferences→Service
catalogue) using http://registry.elda.org as base URL instead of the bioCatalogue one.

4.9 Conclusion
The final release of the Registry contains new functionalities and much more usage possibilities.
This is the consequence of a constant growing of users and web services registration. Indeed,
there were 50 web services registered in its very first version at t14, then 61 web services
registered at t20 and now more than 120 web services registered at t30. There are 21 registered
users, including 3 users outside of the PANACEA project and 8 submitters from 7 different
institutions.

Now the language categories have been set up, the Registry is definitively a HLT tool that users
from the domain can use. Currently, 94 (on 119) web services have been already tagged with
languages.

5 Workflows

5.1 Taverna
In this section all the relevant topics about Taverna are presented. Taverna is the workflow
manger for the 1st, 2nd and 3rd version of the PANACEA platform. The needs of the project
(large data, many input files, and long lasting processes) make it necessary to make use of all
the functionalities that Taverna provides. These advanced features of Taverna will be used to
design robust workflows for the 3nd version of the platform. All these features were presented on
the previous deliverable D3.3 but are explained in this deliverable again due to its huge impact

D3.4 Third version (v4) of the integrated platform and documentation

20

on the workflow designs and the massive data experiments. The new Taverna 2.4 is introduced
due to its impact on the successful large data experiments.

These are the presented topics:

 Polling

 Retries

 Parallelization

 Taverna 2.4

 Taverna Server 2.4

5.1.1 Polling
As mentioned before, “polling” is a very interesting feature of Soaplab web services that allow
the execution of long lasting processes without reaching the client’s timeout. If Taverna calls a
web service and it doesn’t answer in before this timeout the call is cancelled and an error is
reported. Thanks to Soaplab polling we will be able to skip this timeout by making periodic
requests to the web service to check its status.

Workflow designers can avoid the timeout by creating a series of calls to the soaplab operation
“getStatus” until the web service is finished and then use operation “getResults”. This would
perfectly work but it would create a much more complex workflow than what users in
PANACEA are used to.

On the other hand, if designers make use of the Taverna Soaplab plugin (it was also used in the
1st version of the platform) they’ll be able to easily configure polling without making complex
series of calls. The plugin will make them automatically. This is one of the reasons why it was
important to use the plugin.

D3.4 Third version (v4) of the integrated platform and documentation

21

Figure 3: Polling parameters with Taverna Soaplab plugin

Figure 3 shows how to configure the polling in a Soaplab web service. “Interval” sets the initial
time between requests, the “backoff” parameter specifies how “Interval” is increased every time
and “Max interval” is the Max interval used between requests.

All this information can be found on the Taverna tutorial.

5.1.2 Retries
When a workflow has a few input files (it has a few iterations) if something goes wrong or one
of this files fails at some point of the workflow there is always the option of running the
workflow again.

However when there are a lot of iterations running the workflow again is a waste of time and
resources. Taverna implements an automatic retry system that allows the designer to configure
every web service call in a workflow.

D3.4 Third version (v4) of the integrated platform and documentation

22

Figure 4: retry parameters

In Figure 4 it can be seen how to configure retries for a web service and the parameters
involved.

The Taverna tutorial has a link to a myGrid video which is very descriptive and helpful to
understand how to use the “retry system” in Taverna.

5.1.3 Parallelization
Taverna offers to possibility to make multiple calls to the same service in one workflow. This
parallelization makes workflows with multiple iterations to finish earlier. The first simple test,
carried out in UPF about parallelization demonstrated that simply doubling (x2) one web service
in a workflow with only that service reduced the execution time in half.

Parallelization seems to be a great advantage but it has its drawbacks. Web services are run on
machines with limited resources (processors, memory, etc.) which cannot handle infinite
parallel calls to their web services. One problem is that most of those limits can only be
measured empirically. Some web service providers offer information about the limits of their
web services on the Registry.

A bad use of parallelization may cause the server to fail or to be very slow which is the opposite
of the desired behavior. To avoid this situation WSP and users can both take precautions: WSP
can implement a system to limit the amount of parallel requests. On the other hand, users should
follow the recommendations found on the documentation of the web service (Usage conditions).

Figure 5 shows how to use the parallelization parameter for a web service in Taverna.

The documentation about Parallelization can be found on the Taverna tutorial.

D3.4 Third version (v4) of the integrated platform and documentation

23

Figure 5: Parallelization parameter

5.1.4 Taverna 2.4
At the beginning of the 3rd development cycle Taverna 2.3 was tested and adopted as the version
to be used for the 3rd version of the platform. It presented some major changes like REST
capabilities, XPath and Tool services. It also presented other changes and improvements that are
listed in the Taverna site17. Some of these changes are relevant to the large data experiments
because they are related with Taverna engine performance, memory usage, etc.

Workflows designed with Taverna 2.2 were compatible with the new Taverna 2.3 so there was
no need to rebuild or redesign them.

Several large corpora tests (PANACEA-WP3-t22-Massive_data_tests-v02-deliverable from
D.3.3) were done with the new Taverna 2.3 which presented a considerable improvement in
robustness and memory usage. However, a few bugs were detected and reported to Taverna
developers.

Taverna has a very active community and it has been improved since its early beginning in
2001. Taverna developers are always willing to help users and are very responsive to bug
reports and improvement suggestions.

PANACEA bug reports were used by developers to make a more robust workflow engine which
was being prepared for the Taverna 2.4. When a first beta version of Taverna 2.4 was ready it
was tested by PANACEA developers certifying that the bugs had been fixed and the large data
experiments were successful. A few weeks later, the new and latest version of Taverna was
released and made public. This new Taverna 2.4 is the official PANACEA recommended
version of Taverna for the 3rd version of the platform and the industrial evaluation (WP8).

17 http://www.taverna.org.uk/download/workbench/release-notes/

D3.4 Third version (v4) of the integrated platform and documentation

24

The numerous contacts between PANACEA and Taverna are not only used to fix bugs and
increase robustness of the system but to design and foresee the technical aspects and usability of
the future Taverna 3 (which is now under development). PANACEA contributions,
recommendations and wishes are taken into account by Taverna developers like many other
feedback provided by a large community of users and numerous projects.

5.1.5 Taverna 2.4 Server
The plan for PANACEA platform 2 was to have a Taverna Server where long lasting workflows
could be executed and results would be obtained later. Having Taverna on a server would allow
it to have a better internet connection and more resources (memory, faster hard drive, etc) than a
personal computer. It would also allow users to shutdown their computers while the workflow is
being executed on the server.

Taverna 2.2 server was tested but it didn’t fulfil PANACEA requirements of usability and
security. It required a lot of development to make it ready for users. It was decided to wait for
the Taverna Server 2.3 due to May 2011.

At the end, the Taverna Server was delayed and it wasn’t released until 4th of May 2012.
Although it fulfils the PANACEA requirements, the GUI that would allow users the easily
interact with the Tavera server in a secured environment is not ready yet. Developing such GUI
is not feasible with the remaining time and resources for PANACEA. However, PANACEA
developers will try to deploy it as soon as the GUI is released (if feasible).

5.2 Workflows
Several relevant workflows are listed in this section regarding the 3rd version of the platform.
The rest of the workflows are presented can be found on the PANACEA myExperiment portal.
WP5 and WP6 new workflows will be presented in D5.4 and D6.2 respectively.

5.2.1 GrAF Dependency Parsing Freeling for basicxces documents
This workflow shown in Figure 6 of Section 16.3 is a prototype example of a Dependency
parsing workflow using Freeling. Input data are basicxces documents (PANACEA TO1) and the
output is presented in the GrAF format.

This workflow can be found on http://myexperiment.elda.org/workflows/40

5.2.2 GrAF Dependency parsing with Vocabulary Analysis
“GrAF Dependency Parsing Freeling for basicxces documents with Vocabulary Analysis”
workflow showed in Figure 7 of Section 16.3 shows a prototype example of a Dependency
parsing workflow using Freeling with extra information results given by the Vocabulary
analysis Web Service.

This workflow can be found on http://myexperiment.elda.org/workflows/43

5.2.3 GrAF PoS tagging with CORPUS analysis
“GrAF PoS tagging with Freeling for basicxces documents with CORPUS analysis” workflow
showed in Figure 8 of Section 16.3 shows a prototype example of a PoS tagging workflow using
Freeling. Input data are basicxces documents (PANACEA TO1) and the output is presented in
the GrAF format. It also shows some corpus analysis examples with CQP web services and
vocabulary analysis. The workflow extracts the list of verbs and nouns.

D3.4 Third version (v4) of the integrated platform and documentation

25

This workflow can be found on http://myexperiment.elda.org/workflows/51

5.2.4 Bilingual Sentence Alignment with Hunalign into TMX
“Bilingual Process, Sentence Alignment of bilingual crawled data with Hunalign and export
into TMX” WP5 workflow shown in Figure 9 of Section 16.3 can process CesAlign documents
(the output of the bilingual crawler at ILSP) and get the sentence alignment using Hunalign. The
output is exported to TMX format.

This workflow can be found on http://myexperiment.elda.org/workflows/37

5.2.5 Sentence alignment for plain text documents with BSA and TMX output
This WP5 workflow shown in Figure 10 of Section 16.3 is an example workflow for the
bilingual sentence alignment of text documents using BSA. The output is a TMX document.
This particular example reads files from the local folders. There is another workflow example
that performs the same task but with URL documents.

This workflow can be found on http://myexperiment.elda.org/workflows/42

5.2.6 Temporary file append example
This workflow shown in Figure 11 of Section 16.3 shows how to create a temporary file and
append data into it so it can be read at the end.

This workflow can be found on http://myexperiment.elda.org/workflows/47

5.2.7 Plain text to dependency parsing
This workflow shown in Figure 12 of Section 16.3 takes in input a plain text in Italian and
returns it annotated up to dependency parsing in the CoNNL/TANL format.

This workflow can be found on http://myexperiment.elda.org/workflows/53

6 MyExperiment: sharing workflows
At the end of the second cycle, the version of myExperiment was already close to be final. Only
a few cosmetic improvements have been made, including the addition of one new licence. In the
mean time, new functionalities have been provided by the myExperiment.org developers, such
as the list of the services from the Registry and their description or topics, tag clouds of the
myExperiment workflows.

6.1 Usage within Taverna
It is possible to use MyExperiment within Taverna directly, without any plugin installation. In
fact, only the myExperiment setting has to be changed (in the menu File→Preferences→
myExperiment) using http://myexperiment.elda.org as base URL instead of the original one.

6.2 Shared workflows
The complete list of public workflows posted on the PAANCEA myExperiment portal can be
found in Section 16.2.

D3.4 Third version (v4) of the integrated platform and documentation

26

7 Complementary tools

7.1 Web Service Statistics
In this section the statistics system developed to study the usage of the web services is
motivated and described.

7.1.1 Motivation
Once the web services are deployed it is interesting to get statistics of their usage. During the
massive data experiments and when some Phd students make use of the web services this
statistics can provide valuable information about the servers.

The goal is to give the WSPs the chance to easily install software to get some basic but valuable
statistics of their web services.

A first statistics system was deployed to show the number of web service requests per day done
by users on a specific server. The statistics are presented as a simple web18 that shows a graphic
for each server being monitored.

Afterwards, more statistics were added to the original system by providing the country from
which the request is being made and different time intervals. This will allow service providers
to monitor if their users are basically locals or there are other locations interested on running
their web services. These new statistics are also presented as a web site showing the figures for
a single server19.

7.1.2 Development
The source code and documentation can be found on this deliverable on the source-code folder.

7.2 Storage System
In this section the PANACEA storage system is presented. An open source storage system has
been used and modified to fulfil the PANACEA requirements.

7.2.1 Motivation
After the 2nd cycle of development and the first large data experiments it was concluded that
using URLs to reference the data has multiple advantages. For example, it improves the network
usage and the memory footprint of the clients (programs or Taverna) making requests to the
web services.

The goal was to find an already existing open source storage system that had a user friendly
interface and this kind of features that are interesting for users:

 browse directories & files on the server and

 edit, copy, move, delete files,

 search, upload and download files,

 create and extract archives (ZIP and others),

18 http://ws02.iula.upf.edu/panacea/statistics/upf-statistics.html

19 http://ws04.iula.upf.edu/ws/statistics/stats_panacea.html

D3.4 Third version (v4) of the integrated platform and documentation

27

 create new files and directories,

 change file permissions (chmod)

On the other hand, the storage system also has to be easy to install, deploy and configure by
WSPs. Users will only benefit from this storage system if there is someone (institution,
company, etc.) willing to provide this storage system service.
The chosen storage system will be modified to fulfil PANACEA users’ needs specially to get
the URLs of the stored files. Therefore, in this scenario, a user can easily upload files to the
storage system and organize and modify them directly on the server. Afterwards the user can
easily get the list of URLs to be used as input for workflows or Web Service calls.

7.2.2 Development
As a “storage system” we decided to personalize the “ExtPlorer” tool. According to the website,
the Extplorer is a “PHP and JavaScript based File Manager”. The “Ext” in the name, in fact
recalls the JavaScript libraries used to develop the system: ExtJs. The PHP implementation, on
its side, allows a quite easy installation procedure.

The ExtPlorer package is downloadable from http://extplorer.sourceforge.net/. ExtPLorer is
distributed under a dual-license and subjected to the Mozilla Public License Version 1.1 or to
the terms of the GNU General Public License Version 2 or later (the "GPL"). Alternatively, the
software may be used under the terms of the GNU General Public License Version 2 or later
(the "GPL").

The Extplorer storage system has been personalized to give users a really user friendly tool to
manage data on the server side and easily get the URLs lists that are optimal to work with web
services and workflows.

The source code and its documentation can be found on this deliverable on the source-code
folder. You can have a look to the storage system and its functionalities going to
http://langtech3.ilc.cnr.it/html/extplorer/. Please use panacea as user and password. Once you
logged you see all files and/or folders that one WSP supplies (according to the credentials
submitted). Using contextual menu users can select one or more rows:

D3.4 Third version (v4) of the integrated platform and documentation

28

Once “Get current URL” is pressed the list of available URLs is sent to the users via a
dialogBox:

URLs are copied and used in web services.

Similarly if a folder is selected, the menu item is “get content directory” which, once pressed,
shows (recursively) the list of files contained in the folder(s):

D3.4 Third version (v4) of the integrated platform and documentation

29

This storage system is a great help for users for easily getting URLs and directory content. The
user of the storage (panacea in this deliverable) is locally defined, locally at WSP server.
However, this user can be shared among different WSPs, accordingly to the security that will be
defined within PANACEA.

8 Large data
Making the PANACEA platform able to process large corpora was one of the most challenging
requirements for WP3. The first version of the platform was not supposed to fulfil this
requirement. Therefore, the main goal of the first version of the platform was to deploy and
chain components. Those workflows were designed basically to prove the connectivity between
components and to gain design experience.

 The 2nd version of the platform was supposed to fulfil the large data requirement. PANACEA
developers worked to improve Soaplab and learn the best ways to design workflows and clients
for the web services that could scale in number of requests and also the data size of these
requests. The application server (e.g. Tomcat) was installed using native libraries to get the best
performance and also the temporary files were dynamically erased. However, Taverna 2.2 and
2.3 had some bugs that make some large corpora experiments fail. Therefore we can consider
the 2nd version of the platform not ready for large corpora20.

Finally, a large collaboration task between PANACEA and Taverna developers ended in a set of
bug solutions added to the latest Taverna release (2.4). The previously unsuccessful experiments
were now executed normally proving that the design and the improvement tasks made by the
PANACEA developers had been in the good direction. Final successful experiments, reported
on the final report about large corpora included in this deliverable, make the large data
requirement fulfilled for the 3rd version of the platform21.

20 The massive data report for the second version of the platform can be found on the D3.3 ZIP file.

21 The final report about the large data experiments can be found on the reports folder of this deliverable
ZIP file.

D3.4 Third version (v4) of the integrated platform and documentation

30

Successful experiments, presented on the report, are based on the workflow processing of
corpora presented and used in other work packages. There have been several different
experiments with more than 20k files and 50M words corpora. Other work packages will also
show successful large corpora experiments on their deliverables. It must be taken into account
that large corpora experiments can be achieved by processing a lot of files (parallelization,
concurrence, files management, etc.) or running long lasting tasks (large input files, complex
algorithms, avoiding timeouts, etc.).

Moreover, we would like to see how the servers hosting the web services can handle all these
experiments. To this aim, a statistics system (Section 7.1) has been deployed that show in real
time the number of request per day that a concrete server has processed.

The following pictures show the requests per day statistics of two PANACEA servers that are
used by PhD students to make experiments using workflows. These servers are also used to
make PANACEA experiments for WP3, WP4, WP5 and WP6.

The figures have coloured circles showing days with around 100k, 50k and more than 10k
requests in a single day in red, purple and green respectively. The figures show that the servers
are robust enough to handle a considerable amount of requests per day and what is particularly
important: they need no specific maintenance despite the large amount of requests. Temporary
files are managed automatically and the applications server (Apache Tomcat in this case) is

D3.4 Third version (v4) of the integrated platform and documentation

31

automatically monitored. In case the system has a problem, the applications server is
automatically restarted.

The final report about large data21 also presents the concurrency experiments showing the
maximum amount of concurrent users (or parallel requests) that the servers can handle with the
actual configuration. This limitation depends on the task and the web service being used. For the
PoS tagging task using the “freeling_tagging” web service the results show that the system can
handle up to 100 concurrent users with a slow performance (slow means the users has to wait
more time to get the result). On the other hand, the system has a fast performance for up to 20
concurrent users.

With the given results, it can be concluded that the system can scale by using multiple replicas
of the server (i.e. using AMAZON cloud service). More users or more parallel requests could be
served using standard balancing software that could distribute the incoming request between the
server replicas getting the best performance and total data throughput.

9 Interoperability
This new architectures based on web services introduced a new paradigm in NLP tools: users
don’t need to install and perform the maintenance of the tools. As soon as the first web services
were ready to be used and were easily discovered using the Registry, users wanted to try them.
The web interfaces (e.g. Spinet) facilitate the first contact with new tools and help users get used
to them.

The next step was soon required by users: chain web services to create complex workflows.
Interoperability became a fundamental necessity for the factory. Workflows cannot be made if
the designer doesn’t know how to connect inputs and outputs or the tools don’t “understand”
each other.

Interoperability in the platform was designed at the beginning of the project. Interoperability can
be divided in three levels: protocols, parameters and data. By protocols we refer to all technical
aspects involved in the communication process. The web services can use SOAP or REST, the
web client can be AXIS, JAX-WS, or others, and there can be a security protocol involved too.
The other aspect is the parameters of the web services. All web services must use the same
naming convention for parameters, not only to help users but for automatic processes to check
compatibility, etc. Using the same naming convention could foster automatic workflow design
in the future. Finally, the data being transferred between components must follow a concrete
format. Tools must be able to process this format which is being transferred between
components. This data object was called Travelling Object (TO) because of the distributed
nature of the factory (web services are deployed in different locations).

9.1 Common Interfaces
Tools are very different depending on the functionality they try to fulfil and so are their
parameters. A general web service CI has been designed for different functionalities like PoS
tagging, tokenization, lemmatization, alignment, etc. The goal is to have a common parameters
definition for all web services providing a specific functionality i.e. two different PoS taggers
will be deployed as web services using the same mandatory parameters.

D3.4 Third version (v4) of the integrated platform and documentation

32

Common Interfaces for the web services are used to provide users and WSPs with a reference
showing which mandatory parameters must be used for each functionality (PoS tagging,
tokenization, sentence alignment, etc.). The ultimate goal is that components performing the
same functionality can be substituted performing the minimum change in the depending
software, i.e. workflow.

The Common Interfaces have been explained in detail in deliverable D3.1. This section will
show any updates done to the CI during the third development cycle.

9.1.1 WP3 new Common Interfaces
There are no new CIs for WP3 web services.

9.1.2 WP4 new Common Interfaces
There are no new CIs for WP4 web services.

9.1.3 WP5 new Common Interfaces
The detailed information and documentation regarding the WP5 CI update can be found on
deliverable D5.4. The mandatory parameters defined in that document have been used to expand
the CI.

The WP5 components for which a new CI has been defined are:

• Bilingual term extraction

• Transfer lookup

All these CI definitions can be found on deliverable D5.4, in the CI (source-code folder)
included in this deliverable ZIP file on the documentation folder or the documentation section
of the PANACEA web site.

9.1.4 WP6 new Common Interfaces
The detailed information and documentation regarding the WP6 CI update can be found on
deliverable D6.2. The mandatory parameters defined in that document have been used to expand
the CI.

The WP6 components for which a new CI has been defined are:

 Verb SCF Extractor

 CQP indexer

 CQP querier

 dt_noun_classifier_[class] (One-class classifier)

 noun_classification_filter

 MWE Extractor

 merge_lmf_files

D3.4 Third version (v4) of the integrated platform and documentation

33

All these CI definitions can be found on deliverable D6.2, in the CI (source-code folder)
included in this deliverable ZIP file on the documentation folder or the documentation section
of the PANACEA web site.

9.2 Travelling Object
The Travelling Object (TO) is the data object that is being exchanged between the platform
components. The TO can be different depending on the situation and the components connected
and has been chosen following already existing standards.

As presented in Poch and Bel (2011), there have been relevant proposals from the Language
Resources community to reach a consensus about formats to represent annotated corpora. The
aim of the PANACEA developers has been to use already defined and used standards for each
scenario that required a common data format.

9.2.1 XCES
The XCES format is the XML version of CES (Ide et al.,2000) which is a part of EAGLES
guidelines for corpus representation to work in natural language processing applications.

It was chosen to be used in the platform because it was the minimum common format used for
the first tools to be deployed as web services for the platform version 1.

Its documentation can be found on deliverable D3.1, this deliverable ZIP file on the
documentation folder, and on the Documentation section of the PANACEA web site22.

9.2.2 GrAF
The Graph Annotation Format (Ide and Sudermam, 2007) is the XML serialization of LAF (ISO
24612, 2009). GrAF can be used as a container for different annotation types with variable
complexity.

The GrAF format was chosen to be used in some scenarios in the PANACEA platform during
the 2nd development cycle. It was explained in deliverable D3.3 section 7. Its documentation can
also be found on this deliverable ZIP file on the documentation folder and on the
Documentation section of the PANACEA web site22.

9.2.3 LMF
The new web services for WP5 (Bilingual term extraction and Transfer lookup) will output
Lexical Markup Framework (LMF) documents. These web services and the LMF travelling
object are explained in D5.2.

Moreover, the new Travelling Object used for WP6 web services is also LMF. It is explained in
detail in D6.2 from the WP6 point of view.

9.2.4 CoNLL
The Conference on Computational Natural Language Learning (CoNLL) format is used to
represent data in different multi-lingual dependency parsing tasks. Different tools and
converters have been deployed as web service to be used with CoNLL data format.

22 http://panacea-lr.eu/en/info-for-professionals/documents

D3.4 Third version (v4) of the integrated platform and documentation

34

10 Other technologies and projects

10.1 Relations with other projects
PANACEA has monitored the different ongoing initiatives working with WS and Workflows in
order to restrict the selection of standards and interoperability strategies to those that were
already being addressed, if any. As a result of such contacts, PANACEA was invited to join the
initiative of creating an ISO international working group on Web Service Exchange Protocols.
The main concern of this group is to go a step further and to define in addition to syntactic
interoperability protocols, semantic interoperability.

PANACEA has attended two meetings of this group and presented its results as input for the
future group task definition. UPF has shown its interest in participating in this working group.
Other participants are:

- Language Grid (University of Kyoto)

- LinguaGrid (CELI)

- EXCITEMENT EU Project (FBK)

- Australian National Corpus Project

- NLP Interchange Format

- INTEROP project (Brandeis University)

10.1.1 META-SHARE
The goal with META-SHARE is to use data stored in META-SHARE as input for PANACEA
web services.

Most web services in PANACEA can work with direct data or referenced data. And most of
them are designed to process a single data file per web service call. To process a corpus divided
in numerous files user must make different web service calls. However, there are a few web
services which allow processing multiple data files presented in a list of URLs.

File URLs to be processed must be unprotected by passwords (Soplab does not handle HTTPS
protocol yet).

To be able to process META-SHARE files users should be able to find non-password protected
links to free data. When the desired data is a multiple file corpus a list of links should be
presented.

META-SHARE data is password protected and to get the resource users must click on a button.
This button makes it impossible for the web services to access the data. Resources which are
stored on a META-SHARE node need to be downloaded by users and therefore cannot be
directly used by web services. On the other hand, resources which are simply documented in
META-SHARE could be used in some cases. The user can click the download button to get a
URL which can be used in a Web Service.

D3.4 Third version (v4) of the integrated platform and documentation

35

10.2 Other technologies
Soaplab has allowed PANACEA partners to deploy SOAP web services with AXIS and JAX-
WS interfaces. There are other interfaces (AXIS 2, etc.) and frameworks to deploy web services.
There is also the option of deploying REST web services.

Thanks to Taverna and the fact that most of these technologies are standard the interoperability
between them is not a problem. PANACEA web services have been called from PERL and
PYTHON programs without problems and therefore no other protocols have been surveyed.

11 Security
In this section some security features that can be useful for an industrial exploitation of the web
services are presented. Companies or institutions could find a business opportunity in selling
services. To this aim, in most cases, it is required that the web service is password protected
(user authentication) and in some cases to increase security data encryption is also necessary.

It must be taken into account that these features have an impact on the performance of the
server. Data encryption can have an important impact on the overall throughput of data so it’s
recommended to use it only when it’s necessary. In production environments it’s worth trying
different configurations or moving the encryption task to a different server to do not overload
the Tomcat server.

11.1 Web Services Authentication
In this section we are going to describe how to add authentication security to Soaplab, another
web application or web service using Apache Tomcat as a web application server. It must be
taken into account that there are many other ways to add authentication to web services. Some
of them involve complex configuration and even some protocol change. Therefore, this
experiment will be presented as a proof of concept showing that password protected web
services can be deployed using standard Tomcat features.

To add a password to a web application in Apache Tomcat we need to configure Tomcat and the
application itself (in our case, Soaplab). This password will be asked to the user when Spinet
web client is opened from a web browser. When we try to call password protected web services
from Taverna or a program (perl, python, etc.) not providing the user and password the web
services will answer an error message and deny access.

To configure Tomcat we need to modify the tomcat-users.xml configuration file:

 <!-- SECURITY START! -->
 <role rolename="webservice" />
 <user username="USER" password="PASSWORD" roles="webservice" />
 <user username="USER2" password="PASSWORD2" roles="webservice" />
 <!-- SECURITY END! -->

Afterwards, we need to configure the web application to be password protected by modifying
the web.xml configuration file:

 <!-- SECURITY START! -->
 <security-constraint>

D3.4 Third version (v4) of the integrated platform and documentation

36

 <web-resource-collection>
 <web-resource-name>secured services</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>webservice</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>webservice</realm-name>
 </login-config>

 <security-role>
 <description>
 The role that is required to log in to the Manager Application
 </description>
 <role-name>webservice</role-name>
 </security-role>
 <!-- SECURITY END! -->

Afterwards the web service provider must recompile the web application, deploy it on the server
and in some cases restart the Tomcat server.

Taverna has a credentials manager to manage, users, passwords, certificates, etc. After the web
service has been protected with authentication the user will need to set a user and password on
the credentials manager to make requests to that web service. On the other hand, other clients
will also need to set the credentials to have access to the web service.

11.2 Web Services Data Encryption
If the web service provider wants the data being exchanged between the server and the clients to
be protected from other users who may be “listening” then data encryption is necessary. To this
aim there are different protocols and algorithms to encrypt the data.

We are going to use as a proof of concept the Secure Socket Layer (SSL) protocol. SSL is a
protocol that provides security for communications between client and server by implementing
encrypted data and certificate based authentication. When SSL is configured instead of using
HTTP the server will use the secured HTTPS protocol.

Tomcat fully supports SSL and therefore it has a tutorial showing how to do that. This
procedure can be different depending on the configuration of our Tomcat. We are not going to
detail the whole process but we are going to describe it.

SSL is based on certificates. The server needs to have a certificate to use SSL; this certificate
needs to be certified by a Certification Authority (CA) if we want to be sure no other server can
use a certificate to impersonate our server. When the certificate is generated and the server
configured the system is ready to encrypt the data being send between the server and the clients.

Having a certificate validated by a CA is not free and it costs around 70 € per month. Users can
easily see if a certificate is validated by a CA in the web browser because the HTTPS turns
green when the certificate is validated and red when it is not.

D3.4 Third version (v4) of the integrated platform and documentation

37

WSPs interested in encryption should use the Tomcat documentation or consider using another
server to carry the encryption task. They should also follow the instruction of the chosen CA
(e.g. http://www.verisign.com) to have their server certificate to be validated.

12 The previous evaluation
The last validation cycle performed at T23 validated the functionalities of the platform v2 and
the integration of the components ready at that time. On the basis of the validation report and
on the feedback received by validators, improvements and additions have been made to the
platform v3.

Below, we review the validation conclusions and the lessons learnt reported in D7.3 (section
2.7), mainly focussing on the problematic issues, and single out the tasks and efforts made to
address those issues and to improve the platform functionalities.

Overall, validation was very satisfactory as most of the requirements were fulfilled and the
platform proved technically functional, realized its main technical expectations. Some
weaknesses however emerged. In general, the weakest aspect of the platform in its second
version seemed to be documentation, which had some gaps. In particular:

1. The Registry: Navigation within the registry was quite easy and natural; the different
views, the filtering options using categories, and the Web-Services status flag proved
interesting and useful features. However, validators found some difficulties in finding
and registering specific web services, and some functionality was missing (e.g. the
confirmation of a registration by an administrator, the possibility to unregister). Also the
category list for registering and “classifying” the registered services in the registry was
incomplete, and there was no possibility for the service provider/user to add one during
the registration/annotation of the service. Also, it seemed that the distinction between
SOAP and Soaplab service registration was not clear to providers. Although the search
functionalities were implemented and working as expected, improvements on this side
could provide and added value to the portals and to make it easier to potential users to
retrieved desired services.

To address these issues, for the third version of the platform additional documentation
in the form of tutorials has been produced to providers in correctly register and annotate
their services and workflows, by showing the PANACEA “best-practices” step-by-step.
Afterwards, there has been a documentation task carried by all web service providers to
annotate their web services. The language category has been added to assist users when
search for the most adequate services for their needs.

2. myExperiment: During the second validation, the search function was not working
properly and pictures of workflows were not shown.

These known bugs have been fixed for the third version.

3. Metadata description: Metadata guidelines were not available to validators. Now there
are tutorials and videos showing how to correctly annotate web services and workflows.
Web services metadata can be filled in following those tutorials. There are 2 disclaimers

D3.4 Third version (v4) of the integrated platform and documentation

38

for WSP to fix the usage conditions for their web services. The “service languages” and
“service categories” are closed vocabularies that can be used by WSP and users to
annotate and search the web services.

4. Documentation: web services and workflows were in most cases not fully documented
and explained in details, which made validators have some difficulties in building and
running workflows them. Web services needed to be better documented especially in
the usage of the optional parameters and with details about the input/output format
requirements, in order to facilitate their interoperability within workflows.

While the responsibility of documenting the usage and functionalities of components
and workflows rests on the individual service providers, to improve on this aspect
efforts have been done to provide more support and information for service providers
and workflow designers on how to annotate and document them. In particular, video
and text tutorials on how to annotate workflows (in Taverna and in myExperiment) and
services (in the Registry) have been prepared and put on the PANACEA website. See
http://panacea-lr.eu/en/tutorials/.

5. Workflow Editor and Error management: The use of Taverna was reported to be
rather easy for processing a simple existing workflow, as well as for combining Web
Services into workflows. The error management and notification in Taverna are
altogether sufficient for validators, especially the visual one within the workflow graph
(the failed Web Service goes in red). Nevertheless, the display of errors could be
improved, notably with the Java error trace that may be hard to follow by a non-
technical user, but such a task was not tackled as it was considered not a high priority.

6. Error handling and exception management: The error management and notification
both in Spinet and in Taverna are altogether technically sufficient for validators as
Soaplab redirects the standard output of the tools as is. Error notification/visualisation
could be improved to make it more user-friendly; however, this was judged not a
priority.

7. Input/output proprietary data management and temporary files management:
validators could not check that Providers complied with the policy of not sharing users’
data and with the deletion of the temporary files from the servers, as they did not have
access to the WSP servers. However, disclaimers are added in the Registry that state
these policies and Service Providers are committed to them.

8. Service bug reporting: the requirement was not fulfilled as no such a mechanism was
implemented. Potential users could only contact service providers directly, when a
contact email is provided in the description of the services in the Registry.a

13 Workplan updates
The statistics and storage features were added to the workplan. They have been presented as
new features for platform version 3 users.

D3.4 Third version (v4) of the integrated platform and documentation

39

14 Conclusion and future work
The third development cycle of the platform has ended. Finally, all WP have deployed their
tools as web services. The PANACEA registry can be used to find those web services and the
necessary documentation. The web services can be chained creating complex workflows in
Taverna and workflows can be found on the PANACEA myExperiment portal.

Soaplab has been the main software used to deploy the NLP tools. Its usability and numerous
features have been a great advantage: from the simple Spinet web client to test the web services
with a web browser to the complex “polling” system to allow long lasting executions; choosing
Soaplab has been a really good strategic decision for the project. However, Soaplab had some
bugs and it needed some improvements to make it more robust and ready to process large
corpora. We want to thank the Soaplab developers for their help fixing those bugs. Afterwards,
PANACEA developers could make some improvements necessary for PANACEA on the
SOAPLAB source code.

Different Web Service Providers have been able to easily deploy their tools as web service for
their respective work packages. Adding extra web services is very straight forward thanks to
Soaplab and this is one of the main reasons why there are more than 120 PANACEA web
services. Many different kinds of tools have been deployed using Soaplab (Perl, Python, Java,
C++, UIMA, etc.) following the Common Interface definition designed to foster interoperability
between web services. The CI, based on the minimum amount of mandatory parameters
necessary to run a web service given a concrete functionality, has been designed to be used for
any kind of web services (not only Soaplab).

Once the web services are deployed, it is time to share them and make them public. It is time for
all users and web service providers to be able to find each others’ web services. The PANACEA
Registry based on the Biocatalogue portal has proven to be a very adequate tool to share web
services. Features like the monitoring system and the categorization system (the language and
functionality of the WS) add a lot of value to the portal. The improvements and modifications to
fit the PANACEA requirements have perfectly adapted a portal originally designed for the
bioinformatics field to the NLP field. Finally, instead of being a simple list of WS and metadata,
the PANACEA Registry it’s a rich source of information and documentation about the web
services, their status, and the community around them.

Once the users can easily find the web services it is time to run and chain them. The Taverna
workflow editor and engine was chosen to this aim. Taverna has allowed PANACEA workflow
designers to chain components using drag and drop arrows and a set of usable GUI. Taverna has
multiple features that help to benefit from web services like polling, retries, and parallelization.
The collaboration between Taverna and PANACEA developers has had mutual benefits that
resulted in bug fixing and extra robustness for the workflow editor.

In many cases, having a workflow example can be of great help for the designer. An already
existing workflow can be merged with another one to create more complex chains or an entire
workflow can be integrated as a component into another one. Sharing workflows among the
community has multiple advantages and to this aim a portal to share workflows was deployed.
The PANACEA myExperiment portal is based on the myExperiment portal and is being used
by PANACEA users to share workflows between colleagues or the whole community.

D3.4 Third version (v4) of the integrated platform and documentation

40

The possibility to chain two web services is based on the ability of both web services to
understand each other. The output data from one component must be understood by the next
component. The so called Travelling Object defines the data format used between components.
It is well known that data formats are still an open topic in the community. There are many
different formats depending on the kind of data to be represented and the application to be used.
For some scenarios stand-off annotation is completely necessary while it can be an extra
overhead slowing the whole processing chain for some others. Also the XML formats and
tabular formats can be of great benefit in some situations while a complete waste of resources in
others. From this point of view, the main strategy in PANACEA has been to deploy the NLP
tools with their original input and output formats. Afterwards, extra output formats where added
and also converters were deployed allowing the user to choose the output format. Some concrete
TOs have been defined, documented and used as main TO: XCES, GrAF and LMF according to
the situation and the characteristics of the data to be represented.

One of the goals of the PANACEA platform is to be able to process large corpora. This very
demanding requirement has been finally fulfilled after this last cycle of development and it is
presented in the “Large data” section (Section 8, page 29). The report shows that the platform
can process corpora like the one crawled by the crawler used in WP4. Those corpora are around
50M words and 20k files. The report shows that the platform can scale but it has limitations.
The use of referenced data (urls) is mandatory to reduce the network usage and the memory
footprint. Even when the whole workflow and services are correctly implemented the system
makes a large use of the network and memory which may cause some problems for some
concrete workflows. Future improvements in all levels (web services, web application server,
workflow engine, data transport and storage, etc.) could help to make the platform even more
robust. These improvements combined with more machine resources and parallelization would
make the platform scale, achieve better performance and a larger total throughput.

Final large corpora recommendations

In this subsection we are going to list a few recommendations and lessons learned regarding the
massive data experiments.

Web Services:

- Use standard protocols: We recommend using SOAP or REST to guarantee interoperability.
The use of standards makes it easy for users to find compatible software: libraries, clients,
workflow editors, etc.

- Wrappers: using a tool wrapper is much recommended. Tool wrappers allow the web service
provider to easily deploy new tools as web services. The code aimed at managing temporary
files, polling, WSDL, different interfaces (Axis 1, Axis 2, REST, etc.) does not have to be
modified for every new web service. Soaplab actually automatically deploys web services using
Axis1 and JAX-WS. It could be improved to also use REST or others.

- Best setup for the Web Application Server: always try to install a robust web application
server, well documented and always use the native libraries to get the best performance. Apache
Tomcat (v6 and v7) was used in PANACEA.

D3.4 Third version (v4) of the integrated platform and documentation

41

- Monitoring the Web Application Server: there are different programs to monitor processes
running on servers. We recommend using one of these monitoring programs to automatically
restart the Web Application Server in case a certain memory or CPU usage threshold is
exceeded. It can also be used to automatically start the Web Application Server when the server
is rebooted.

- Automatically manage temporary files: the number of temporary files can grow really fast
when there are concurrent users. The system must be able to handle a lot of files in a
considerably short time. We recommend erasing the oldest temporary files periodically.
However, if the amount of requests per unit of time is very high this solution may not be
enough. Then a good solution is to check the status of the hard drive. If a certain percentage of
the hard drive is used the temporary files should be erased faster. The goal is to avoid filling the
hard drive which would cause the failure of the system.

- Use referenced data: Avoid sending direct data in SOAP messages. SOAP is not designed to
send large amounts of data. The best solution is to send only references inside the SOAP
message. This will reduce the network usage and will also have an impact on the client
programs (scripts, workflow engines, etc.) that will have a better memory performance (large
SOAP messages are more difficult to process and make use of a lot of memory). Introduce a
URL interface for parameters that may content large data.

- Polling interfaces: most clients using the internet have timeout events. These timeouts are
used to detect problems in the server or the network (non-responsive server) and act
accordingly. These timeouts may have different values: from a few seconds to several minutes.
When a request is sent to a server the client waits until it receives a response or the timeout is
reached. These timeouts may be a problem when we need to make long lasting processes (we
would always hit the timeout). To avoid hitting the timeout limit the best option is to create a
polling interface with operations to “run”, “getStatus”, “getResults”, etc. to periodically ask the
server if a task has finished.

- Protect your web service from abuse: limit the amount of data and parallel requests to your
web services.

Clients:

- Use Polling: Design the program or workflow using the polling interfaces (if available) to call
the web services to allow long lasting tasks. Do not make the requests to check if the task is
finished too often to avoid abusing the network.

- Use asynchronous interfaces for long lasting tasks: If your client needs to be connected to
the web service a failure in the network will make your web service execution fail. Your client
should be able to be closed during a web service execution and still be able to get the results
later. For example, with Taverna workbench the user cannot close the computer or resist a long
lasting network failure. On the other hand, with Taverna Server users can close their personal
computers and get the results later.

- Use parallelization (but do not abuse it): use parallelization to improve the total throughput of
your system but do not abuse it. Follow your web service provider recommendations. Abusing

D3.4 Third version (v4) of the integrated platform and documentation

42

parallelization may cause a huge reduction on the total throughput of your system (and your
WSP may ban you).

- Use a retry system: Many things can fail during a web service request. Sometimes these
failures are due to some problems in the network that are fixed in a matter of seconds. Configure
your client to repeat a request (once or twice) when it fails.

- Use referenced data: avoid receiving and sending your data with direct data. This will help
your application reduce the memory footprint.

However, if the goal is to process 1 billion (109) words corpora or similar the platform is not
able to process it. The network bottleneck, the machine resources for the services (HDD, etc.),
the memory footprint for Taverna, etc. won’t be able to process such an amount of data getting
to a well know topic discussed during the design phase: GRID or not GRID.

GRID technologies could allow processing 1 billion corpora but with a considerable price. Not
only the machine resources required are much higher, the software needed to use and maintain
such distributed systems is complex and much less user friendly than the software being used in
PANACEA. All these technical requirements come together with much more human resources
requirements. It is well know that GRID projects are long lasting projects with large budgets
which are usually working all together: each project can focus on one aspect or element of the
whole architecture (the middleware, the data storage, etc.). For all these reasons, we think that
according to the characteristics of PANACEA, its duration, its budget, etc. the chosen tools to
build the platform were excellent. PANACEA has fulfilled the requirements with the provided
resources and on time while keeping the maintenance costs really low (virtual machines,
automatic services management, simple deployment of new web services, etc.).

A future project prepared to continue the task of maintaining and improving the PANACEA
platform should first of all establish which are the requirements of that future platform are. If
the requirements are high enough (in terms of big data, security, etc.) that GRID technologies
are in order the project budget and planning should be designed accordingly. Probably some
GRID projects should be assigned or invited as partners for a technology transfer or even to run
the experiments on those other projects servers and data storage systems. The task effort should
be studied and a survey should be conducted as to see which are the best technologies to work
with GRIDs, whether is feasible or not to build clusters and data centers or if it’s preferable to
improve the software to jobs on already existing GRIDs.

On the other hand, if such a leap on the requirements is not necessary, the PANACEA platform
has a considerable margin of scalability and improvement while keeping the usability and the
low costs. Designing virtual machines like the ones being used to be replicated in the CLOUD
could represent a step forward in the number of concurrent users that can be handled and in the
total throughput using parallelization. “Services on demand” technologies to automatically boot
new virtual machines depending on the amount of requests being made could reduce the
machine resources cost while making the platform able to handle a high number of concurrent
requests.

Improving the software to deploy the web services (add extra protocols, optimize data
management, etc.), a possible alliance with Taverna, data storage systems and improved data

D3.4 Third version (v4) of the integrated platform and documentation

43

transfers, etc. could also represent a big step forward for the platform. Working to improve
metadata and TOs could also benefit the system and make the automatic workflow design a
reality. A portal used to automatically build workflows could be designed based on the CI and
TOs definitions.

The platform can grow ahead with new technologies an improvements but it is already being
used by PhD students and researchers and PANACEA developers, of course. Some of the
servers with PANACEA services have had more than 300000 requests in a single day showing
that users are really using the platform and that it can handle a considerable amount of requests.

From our point of view, these distributed platforms can foster research and NLP tools
development. Companies can even sell their services through the network and get to all kind of
users thanks to the registry and other portals of the platform. It also benefits PhD students and
researchers since they can make calls to the service form any place without installing the tools,
without the maintenance, etc. For all these reasons with think the platform represents a step
forward for the NLP field and thanks to its low cost we expect it to last and grow to benefit all
users.

15 Bibliography
 [Biocatalogue] K. Belhajjame, C. Goble, F. Tanoh, J. Bhagat, K. Wolstencroft, R. Stevens, E.
Nzuobontane, H. McWilliam, T. Laurent, and R. Lopez, "BioCatalogue: A Curated Web Service
Registry for the Life Science Community" in Microsoft eScience conference, 2008.

[Deliverable D3.1] Poch, Marc, Prokopis Prokopidis, Gregor Thurmair, Carsten Schnober,
Riccardo Del Gratta, and Núria Bel. 2010. D3.1 - architecture and design of the platform. The
PANACEA Project (7FP-ITC-248064).

[Deliverable D3.2] Marc Poch (UPF), Olivier Hamon (ELDA), Gregor Thurmair (Linguatec),
Núria Bel (UPF). 2011. D3.2 - First version (v1) of the integrated platform and documentation.
The PANACEA Project (7FP-ITC-248064).

[Deliverable D3.3] Marc Poch (UPF), Olivier Hamon (ELDA), Antonio Toral (DCU), Prokopis
Prokopidis (ILSP), Roberto Bartolini (CNR-ILC), Francesco Rubino (CNR-ILC), Gregor
Thurmair (LG), Vassilis Papavassiliou (ILSP) Núria Bel (UPF). 2011. Second version (v2) of
the integrated platform and documentation. The PANACEA Project (7FP-ITC-248064).

 [GrAF] Nancy Ide, Keith Surderman. 2007. “GrAF: A Graph-based Format for Linguistic
Annotations”. In Pro-ceedings of the Linguistic Annotation Workshop (June 2007), pp. 1-8.

[myExperiment] D. De Roure, C. Goble, and R. Stevens, "The Design and Realisation of the
myExperiment Virtual Research Environment for Social Sharing of Workflows," Future
Generation Computer Systems, vol. 25, pp. 561-567, 2008.

[Soaplab] M. Senger, P. Riceand T. Oinn. "Soaplab - a unified Sesame door to analysis tools
(2003)" In UK e-Science All Hands Meeting.

D3.4 Third version (v4) of the integrated platform and documentation

44

[Taverna] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn,
"Taverna: a tool for build-ing and running workflows of services.," Nucleic Acids Research,
vol. 34, iss. Web Server issue, pp. 729-732, 2006.

[Taverna] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover, C. Goble, A.
Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R. Stevens, A. Wipat, and
C. Wroe, "Taverna: lessons in creating a workflow environment for the life sciences,"
Concurrency and Computation: Practice and Experience, vol. 18, iss. 10, pp. 1067-1100, 2006.

[XCES] Nancy Ide, Patrice Bonhomme, Laurent Romary. 2000. “XCES: An XML-based
encoding standard for linguistic corpora”. In Proceedings of the Second International Language
Resources and Evaluation Conference. Paris: European Language Resources Association
(2000).

[GrAF] Nancy Ide, Harry Bunt. 2010. Anatomy of Annotation Schemes: Mapping to GrAF.
Proceedings of the Fourth Linguistic Annotation Workshop, ACL 2010, pages 247-255. Nancy
Ide, Lauren Romary.2004. “International Standard for a Linguistic Annotation Framework”.
Journal of Nataural Language Engineering, 10:3-4, 211-225.

[GrAF] Nancy Ide, Keith Surderman. 2007. “GrAF: A Graph-based Format for Linguistic
Annotations”. In Pro-ceedings of the Linguistic Annotation Workshop (June 2007), pp. 1-8.

[IJCNLP] Marc Poch, Núria Bel. 2011. “Interoperability and Technology for a Language
Resources Factory”. In proceedings of the Workshop on Language Resources, Technology and
Services in the Sharing Paradigm. IJCNLP 2011.

16 Annex

16.1 Registry list of deployed web Services
This is the list of web service on 15th of June 2012.

Name Type Category Provider
Registry
Number

noun_classification_filter Soaplab
Lexicon/Terminology
Extraction

Universitat Pompeu Fabra
(UPF) 246

merge_lmf_files Soaplab
Universitat Pompeu Fabra
(UPF) 245

dt_noun_classifier_location Soaplab
Lexicon/Terminology
Extraction

Universitat Pompeu Fabra
(UPF) 244

dt_noun_classifier_human Soaplab
Universitat Pompeu Fabra
(UPF) 243

freeling3_parsed Soaplab Syntactic Tagging
Universitat Pompeu Fabra
(UPF) 241

freeling3_dependency Soaplab Syntactic Tagging
Universitat Pompeu Fabra
(UPF) 240

freeling3_sentence_splitter Soaplab
Chunking/Segmentati
on

Universitat Pompeu Fabra
(UPF) 239

freeling3_tokenizer Soaplab Tokenization Universitat Pompeu Fabra 238

D3.4 Third version (v4) of the integrated platform and documentation

45

(UPF)

freeling3_tagging Soaplab

Named Entity
Recognition,
Morphosyntactic
Tagging

Universitat Pompeu Fabra
(UPF) 237

freeling3_morpho Soaplab
Morphosyntactic
Tagging

Universitat Pompeu Fabra
(UPF) 236

freeling Soaplab
Morphosyntactic
Tagging

Universitat Pompeu Fabra
(UPF) 235

splitter_url Soaplab langtech3-ilc-cnr-it 232

freeling_to_lib Soaplab langtech3-ilc-cnr-it 231

xml_signatures2weka Soaplab
Universitat Pompeu Fabra
(UPF) 230

naive_bayes_classifier Soaplab
Lexicon/Terminology
Extraction

Universitat Pompeu Fabra
(UPF) 229

estimate_bayesian_paramet
ers Soaplab

Lexicon/Terminology
Extraction

Universitat Pompeu Fabra
(UPF) 228

dt_noun_classifier_eventive Soaplab
Lexicon/Terminology
Extraction

Universitat Pompeu Fabra
(UPF) 227

create_weka_noun_signatur
es Soaplab

Lexicon/Terminology
Extraction

Universitat Pompeu Fabra
(UPF) 226

compute_p_cue_class_from
_weka Soaplab Statistics Analysis

Universitat Pompeu Fabra
(UPF) 225

compute_p_cue_class Soaplab Statistics Analysis
Universitat Pompeu Fabra
(UPF) 224

tpc_subcat_inductive Soaplab
Lexicon/Terminology
Extraction panacea-vps-cl-cam-ac-uk 223

tpc_rasp Soaplab

Tokenization,
Stemming/Lemmatiz
ation,
Morphosyntactic
Tagging, Syntactic
Tagging panacea-vps-cl-cam-ac-uk 222

hello_panacea Soaplab www-cngl-ie 220

sentalg_tok_to2tmx Soaplab Format Conversion www-cngl-ie 219

TPC_Freeling_token_split_
POSTagger_en_ca_es_it Soaplab

Morphosyntactic
Tagging langtech3-ilc-cnr-it 215

TPC_Freeling_token_split_
POSTagger_it Soaplab

Morphosyntactic
Tagging langtech3-ilc-cnr-it 214

Converter Freeling 2 DESR Soaplab Format Conversion langtech3-ilc-cnr-it 213

SubcategorizationFramesE
xtractor_IT Soaplab

Lexicon/Terminology
Extraction langtech3-ilc-cnr-it 212

MultiwordExtractor_IT Soaplab
Lexicon/Terminology
Extraction langtech3-ilc-cnr-it 211

TPC_Desr_dependencypars
er_it Soaplab Syntactic Tagging langtech3-ilc-cnr-it 210

fc_panaceacrawledtext_plai
ntext Soaplab Format Conversion langtech3-ilc-cnr-it 209

FC_converter_kaf_to Soaplab Format Conversion langtech3-ilc-cnr-it 208

D3.4 Third version (v4) of the integrated platform and documentation

46

FC_converter_fl_to Soaplab Format Conversion langtech3-ilc-cnr-it 207

columns_selector Soaplab Format Conversion
Universitat Pompeu Fabra
(UPF) 206

freeling_sentence_splitter Soaplab
Chunking/Segmentati
on

Universitat Pompeu Fabra
(UPF) 205

cqp_query Soaplab Corpus Workbench
Universitat Pompeu Fabra
(UPF) 204

cqp_index Soaplab Corpus Workbench
Universitat Pompeu Fabra
(UPF) 203

iconv Soaplab Format Conversion
Universitat Pompeu Fabra
(UPF) 202

classify Soaplab
Lexicon/Terminology
Extraction

Universitat Pompeu Fabra
(UPF) 199

grafconverter_dependency Soaplab Format Conversion
Universitat Pompeu Fabra
(UPF) 197

iula_tagger_graf Soaplab

Corpus Processing,
Tokenization,
Stemming/Lemmatiz
ation,
Morphosyntactic
Tagging

Universitat Pompeu Fabra
(UPF) 187

postagger_to_xces_converte
r Soaplab Format Conversion

Universitat Pompeu Fabra
(UPF) 186

basicxces_to_txt_converter Soaplab Format Conversion
Universitat Pompeu Fabra
(UPF) 185

countngrams Soaplab Statistics Analysis
Universitat Pompeu Fabra
(UPF) 184

xmicas2graf Soaplab Format Conversion nlp-ilsp-gr 182

ilsp_nlp Soaplab

Stemming/Lemmatiz
ation, Tokenization,
Morphological
Tagging nlp-ilsp-gr 180

ilsp_nerc Soaplab
Named Entity
Recognition nlp-ilsp-gr 179

ilsp_depparser Soaplab Syntactic Tagging nlp-ilsp-gr 178

ilsp_chunker Soaplab Syntactic Tagging nlp-ilsp-gr 177

xml2raw Soaplab
Format Conversion,
Machine Translation ws-elda-org 176

raw2xml Soaplab
Format Conversion,
Machine Translation ws-elda-org 175

moses_ibm_enar Soaplab Machine Translation ws-elda-org 174

moses_ibm_aren Soaplab Machine Translation ws-elda-org 173

bleu Soaplab Machine Translation ws-elda-org 172

LTDefaulterServiceService Soap

Stemming/Lemmatiz
ation, Morphological
Tagging 80-190-143-163 164

LTDecomposerServiceServi
ce Soap

Indexing,
Stemming/Lemmatiz
ation, 80-190-143-163 163

D3.4 Third version (v4) of the integrated platform and documentation

47

Lexicon/Terminology
Extraction

LTLemmatizerServiceServi
ce Soap

Stemming/Lemmatiz
ation 80-190-143-163 162

LTTopicIdentifierServiceSe
rvice Soap

Corpus Processing,
Terminology
Management 80-190-143-163 161

ilsp_fmc Soaplab
Corpus Processing,
Crawling nlp-ilsp-gr 160

ilsp_deduplicatormd5 Soaplab
Corpus Processing,
Crawling nlp-ilsp-gr 159

ilsp_cleaner Soaplab
Corpus Processing,
Crawling nlp-ilsp-gr 158

LTTokenizerServiceService Soap Tokenization 80-190-143-163 157

SentenceSplitterServiceServ
ice Soap Tokenization 80-190-143-163 156

grafconverter_skeleton Soaplab Format conversion
Universitat Pompeu Fabra
(UPF) 143

grafconverter_postagging Soaplab Format conversion
Universitat Pompeu Fabra
(UPF) 142

Sed Soaplab Corpus Processing
Universitat Pompeu Fabra
(UPF) 137

soaplab_wsdl_validator Soaplab Management
Universitat Pompeu Fabra
(UPF) 134

ilsp_sst Soaplab
Corpus Processing,
Tokenization nlp-ilsp-gr 131

ilsp_lemmatizer Soaplab

Stemming/Lemmatiz
ation, Corpus
Processing nlp-ilsp-gr 129

ilsp_fbt Soaplab

Morphosyntactic
Tagging, Corpus
Processing nlp-ilsp-gr 128

ilsp_bilingual_crawl Soaplab

Crawling, Language
Guessing, Corpus
Processing nlp-ilsp-gr 127

iula_paradigma Soaplab
Universitat Pompeu Fabra
(UPF) 125

iula_preprocess Soaplab
Universitat Pompeu Fabra
(UPF) 124

get_concordances Soaplab Querying
Universitat Pompeu Fabra
(UPF) 123

busca_signatura_in_corpus Soaplab Querying
Universitat Pompeu Fabra
(UPF) 122

apply_re Soaplab Querying
Universitat Pompeu Fabra
(UPF) 121

iula_lexicon_lookup Soaplab
Universitat Pompeu Fabra
(UPF) 120

iula_tokenizer Soaplab
Universitat Pompeu Fabra
(UPF) 119

D3.4 Third version (v4) of the integrated platform and documentation

48

iula_tagger Soaplab
Universitat Pompeu Fabra
(UPF) 118

xsltproc Soaplab Format Conversion
Universitat Pompeu Fabra
(UPF) 117

pdftotext Soaplab Format Conversion
Universitat Pompeu Fabra
(UPF) 116

panacea_conversor Soaplab Format Conversion
Universitat Pompeu Fabra
(UPF) 115

iconv Soaplab Format Conversion
Universitat Pompeu Fabra
(UPF) 114

html2text Soaplab Format Conversion
Universitat Pompeu Fabra
(UPF) 113

catdoc Soaplab Format Conversion
Universitat Pompeu Fabra
(UPF) 112

vocabulary_analysis Soaplab Statistics Analysis
Universitat Pompeu Fabra
(UPF) 110

tfidf Soaplab Statistics Analysis
Universitat Pompeu Fabra
(UPF) 109

ngrams Soaplab Statistics Analysis
Universitat Pompeu Fabra
(UPF) 108

freeling_parsed Soaplab Syntactic Tagging
Universitat Pompeu Fabra
(UPF) 106

freeling_dependency Soaplab Syntactic Tagging
Universitat Pompeu Fabra
(UPF) 105

kwic Soaplab Text mining
Universitat Pompeu Fabra
(UPF) 103

freeling_tokenizer Soaplab Tokenization
Universitat Pompeu Fabra
(UPF) 101

freeling_tagging Soaplab
Morphosyntactic
Tagging

Universitat Pompeu Fabra
(UPF) 99

freeling_morpho Soaplab
Morphosyntactic
Tagging

Universitat Pompeu Fabra
(UPF) 98

sentsplit_tok2to Soaplab Format Conversion www-cngl-ie 95

sentalg_tok_to2word_alg Soaplab Format Conversion www-cngl-ie 94

gma Soaplab Alignment www-cngl-ie 93

bsa Soaplab Alignment www-cngl-ie 92

anymalign Soaplab Alignment www-cngl-ie 91

hunalign Soaplab Alignment www-cngl-ie 80

hello_panacea Soaplab www-cngl-ie 79

gizapp Soaplab Alignment www-cngl-ie 78

europarl_tokeniser Soaplab Tokenization www-cngl-ie 77

europarl_sentence_splitter Soaplab Tokenization www-cngl-ie 76

europarl_lowercase Soaplab Format Conversion www-cngl-ie 75

chunk_aligner Soaplab Alignment www-cngl-ie 74

berkeley_tagger2to Soaplab Format Conversion www-cngl-ie 73

berkeley_tagger Soaplab
Morphological
Tagging www-cngl-ie 72

berkeley_parser Soaplab Syntactic Tagging www-cngl-ie 71

D3.4 Third version (v4) of the integrated platform and documentation

49

berkeley_aligner Soaplab Alignment www-cngl-ie 70

aligner2to Soaplab Format Conversion www-cngl-ie 69

ExportLMF Soap
Lexicon/Terminology
Extraction wiki-ilc-cnr-it 21

16.2 PANACEA Myexperiment list of shared workflows

Name Type Provider
MyExperiment

Number

Classification of nouns in crawled data Taverna 2 UPF 61

Cleaning and sentence-splitting of web pages Taverna 2 DCU 60

MWE lexicon extractor from text Taverna 2 ILC 58

Text to dependency parsing Taverna 2 ILC 53

Bilingual Process, Sentence Alignment of bilingual
crawled data with Hunalign and export into TMX Taverna 2 UPF 52

GrAF PoS tagging with Freeling for basicxces
documents with CORPUS analysis Taverna 2 UPF 51

Dependency parsed 2 Italian SCF acquisition Taverna 2 ILC 50

From crawled Italian files to PoS tagged TO1 Taverna 2 ILC 49

Dependency parsed 2 Italian MWE and SCF
acquisition Taverna 2 ILC 48

Temporary file append example Taverna 2 UPF 47

GrAF Freeling tagging for plain text data with input
upload and output download Taverna 2 UPF 46

Freeling dependency for plain text data with input
upload and output download Taverna 2 UPF 44

GrAF Dependency Parsing Freeling for basicxces
documents with Vocabulary Analysis Taverna 2 UPF 43

Sentence alignment for plain text documents with bsa
and TMX output Taverna 2 DCU 42

GrAF Dependency Parsing Freeling for basicxces
documents Taverna 2 UPF 40

From crawled Italian files to PoS tagged TO1 Taverna 2 ILC 39

Bilingual Process, Sentence Alignment of bilingual
crawled data with Hunalign and export into TMX Taverna 2 DCU 37

D3.4 Third version (v4) of the integrated platform and documentation

50

Freeling tagging for crawled data with input upload
and output download Taverna 2 UPF 35

List of lists Taverna 2 UPF 34

Freeling tagging for crawled data with output
download Taverna 2 UPF 32

Machine translation for English-to-Arabic,
Evaluation, and back translation Taverna 2 ELDA 31

Conditional Branches example Taverna 2 UPF 30

Berkeley tagging for crawled data Taverna 2 DCU 29

Merge list of errors to string Taverna 2 UPF 27

GrAF PoS tagging with Freeling for basicxces
documents Taverna 2 UPF 26

Panacea Common Interface validation for Soaplab
web services Taverna 2 UPF 25

Freeling to Desr - From text cleaned to text parsed
(with Tokenizer and Tagger Freeling, Dependency
Parser Desr) Taverna 2 ILC 24

WORD freeling tagging and stylesheet Taverna 2 UPF 23

PDF freeling tagging with panacea stylesheet Taverna 2 UPF 22

PDF sentence alignment Taverna 2 UPF 21

ILSP Basic NLP Tools Taverna 2 ILSP 20

bilingual sentence alignment (using GMA) for
crawled data Taverna 2 DCU 19

Wordalignment using GIZA++ Taverna 2 DCU 16

bilingual word aligner for crawled data Taverna 2 UPF 9

bilingual sentence alignment for crawled data EN EL Taverna 2 UPF 8

bilingual sentence alignment for crawled data Taverna 2 UPF 7

IULA tagging for crawled data Taverna 2 UPF 6

Freeling tagging for crawled data Taverna 2 UPF 5

bilingual crawler output language splitter Taverna 2 UPF 4

List example 01 Taverna 2 UPF 3

D3.4 Third version (v4) of the integrated platform and documentation

16.3 Workflow images

Figure 6: Grafconverter_skeleton and Grafconverter_postagging

D3.4 Third version (v4) of the integrated platform and documentation

Figure 7: GrAF Dependency Parsing Freeling for basicxces documents with Vocabulary Analysis

D3.4 Third version (v4) of the integrated platform and documentation

D3.4 Third version (v4) of the integrated platform and documentation

Figure 8: GrAF PoS tagging with Freeling for basicxces documents with CORPUS analysis

D3.4 Third version (v4) of the integrated platform and documentation

55

Figure 9: Bilingual Process, Sentence Alignment of bilingual crawled data with Hunalign and
export into TMX

D3.4 Third version (v4) of the integrated platform and documentation

56

Figure 10: Sentence alignment for plain text documents with bsa and TMX output

Figure 11: Temporary file append example

D3.4 Third version (v4) of the integrated platform and documentation

57

Figure 12: Plain text to dependency parsing

16.4 Usage conditions
These disclaimers can be used in any kind of documentation for a web service and are being
used in the “Usage conditions” metadata field of the PANACEA registry.

16.4.1 Temporary files deletion
Temporary files may be generated by the various processes for their needs
and operations.
Temporary files will not be used by anyone but the actual user of the input
data that generated them. This is part of our data protection policy aimed
at safeguarding the owner rights on the data travelling through the web
services.
Temporary files will be automatically deleted from the system after N days,
even if they are not accessible to anyone but the actual user.
It is the sole responsibility of the input provider to check and ensure
that (s)he has the right to use the input data provided to the platform.
No access or use of the temporary files will be allowed other than
estipulated in this disclaimer.

16.4.2 Fair Share Policy on Parallel Process Running
Users are kindly asked not to submit more than N processes/requests in
parallel. This is part of the fair share policy implemented so as to allow
all users to benefit from the web services offered by the PANACEA platform.
If this policy is not complied with in a way that prevents other users from
using the web services, users concerned may be prevented from submitting
processes/requests, their exceeding processes may be killed and they may be
black-listed for future use.
In the event of an exceptional need to use the platform in a manner not
covered by this disclaimer, users are kindly adviced to address the contact
point of the web service(s) required so as to study the possibility of
establishing an exceptional usage for those web services.

